UNIVERSITYATALBANY

State University of New York

Stochastic Proximal Algorithms
for AUC Maximization

Michael Natole, Jr. 1, Yiming Ying 1 Siwei Lyu 2

!Department of Mathematics and Statistics

2Department of Computer Science

March 24, 2018



I QOutline

Motivation
Why AUC?
What is AUC?

AUC Maximization
AUC Optimization
Stochastic Proximal AUC Maximization Algorithm
Convergence Analysis

Experiments

Conclusion

2/23



I Classification
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Given data {z; = (x;,y;) € Z:i=1...T} , where X C R
and Y = {£1}, we wish to learn the following function

f(x) = sign(wa,-) (1)

where w € R? is the parameter to be learned.
Evaluation by 0-1 loss is usually replaced by a convex
surrogate loss ¢ : R — R™T satisfying [s<q) < &(s).

m Least Square Loss: ¢(s) = (1 — s)?

m Hinge Loss: ¢(s) = (1 —s)4
Empirical Risk Minimization (ERM)

1 T
w* = arg m“in T Z o(yiw " x;). (2)

i=1



I Stochastic Gradient Descent

Stochastic Gradient Descent

Initialize wy, and for any ¢t > 1, draw sample z; = (x¢, y;) at
random, and then

Wei1 = We — e Vad(yew " x) (3)

The idea of SGD dates back to Robbins and Monroe (1951).

The literature on SGD is extensive [Bottou & Cunn (2004);
Srebro & Tewari (2010); Moulines & Bach (2011);...].

Most of the literature focuses on the misclassification error or
accuracy.
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I Accuracy

Consider the case for a sample of 1000 instances with 990
“true” negative instances and 10 “true” positive instances.
Suppose we obtain the following results:

True +1 | True -1
Predicted +1 1 11
Predicted -1 9 979

The misclassification error (or classification accuracy) could
be misleading for real world applications.

This classifier has 98% accuracy, but told us very little.
For this reason, we consider the use of AUC.

5/23



I Receiver Operating Characteristic (ROC) Curve

True Positive rate (Sensitivity)
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Given a confusion matrix, a
ROC curve is a plot of the
False Positive Rate (FPR)
on the x-axis and the True
Positive Rate (TPR) on the
y-axis.

TP

TPR= 75 N
FP

FPR=Fp T

[Hanley & McNeil (1982); Bradley (1997); Fawcett (2006)]
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I Probabilistic Definition of AUC

For a linear scoring function f(x) = w’x, AUC is

AUC(w) =Pr(w x> w'xX|y =1,y = —1)
=1- E[]I[WT(X—X/)<0]‘y = 17y/ = _1]
where (x,y), (x',y') € Z = X x Y are independent.
In imbalanced classification and information retrieval, one
often uses AUC (area under the ROC curve).
AUC is expressed as a sum of pairwise losses between

instances from different classes, which is quadratic in the
number of received training examples
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I AUC Maximization

AUC maximization can be easily modified to a minimization
problem:

m“iln E[H[WT(X_X/)<0]|)/ = 1,y, = —1] + Q(W)

where €(+) is a penalty function.

Replacing the indicator function by the least square loss, AUC
optimization can be formulated as:

muiln E[(1-w'(x=x))>?y=1y =-1]+Qw) (4)
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I AUC Maximization
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When p is a uniform distribution over the finite data
{zi = (xi,yi) € Z :i=1..T}, AUC maximization reduces to

n

> (1= w(xi = %)) y—1ay,=—1 + Qw)
ij=1

i 1
min
w nyn_

where ny and n_ denote the number of instances in the
positive and negative classes, respectively.
Key Challenges

m What happens if the dataset is very large?
m How to handle streaming data?



I Summary of Existing Work
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Algorithm Loss Penalty | Storage | lteration Rate
OAM General L2 o(td) | O(td) | O(1/VT)
OLP General L2 O(td) | O(td) | O(1/VT)

OPAUC | Least-Square L2 O(d?) | O(d?) | 0(1/VT)

SOLAM | Least-Square L? O(d) o(d) | 0(1/VT)

New Alg. | Least-Square | General | O(d) O(d) o(1/T)

[Zhao et al. (2012); Kar et al. (2014); Gao et al (2013); Ying et al. (2016)]




I Previous Work
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Theorem

AUC optimization (4) in the linear case is equivalent to the
following saddle point problem:

min max{E[F(w, a, b, a; z)] + Q(w)}, (5)

w,a,b a€R

where the expectation is with respect to z = (x, y), and
F(w, a, b, a; z) is a quadratic function involving p = Pr(y = 1).

AUC maximization can be reduced to a single integral.

[Ying et al. (2016)]



I Motivation of Key Ideas

SOLAM

Upon receiving data z;, perform

Gradient descent on the primal variables v = (w, a, b)
Vit1 = Ve — YO F(ve, ar, 2t)
Gradient ascent on the dual variable a:
ary1 = ar + V0o F(Ve, at, 2)

This has a theoretical convergence rate of O(1/y/T), but can
we do better?

[Nemirovski et al. (2009); Ying et al. (2016)]
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I Our Key Ideas
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For fixed w, it is easy to see that the optima for a, b, and «
are respectively achieved at

a(w) =w'E[xly =1], bw)=w'E}xly=-1], (6)

a(w) =w'(E[xly’ = ~1] — E[x|y = 1]). (7)

Using the updates for a, b, and «, our new AUC optimization
formulations becomes

mvjn E[F(w, a(w), b(w), a(w); z¢)] + Q(w) (8)



I Stochastic Proximal AUC Maximization

SPAM

Input: Step sizes {n; > 0:t € N}
Initialize wy € RY.
fort=1to T do
Receive sample z; = (x¢, yt)
Compute a(w;), b(w¢), and a(w;) according to (6) and (7).
Wi = Wi — 1:01F(We, a(we), b(wWe), a(wy); z¢)
Wit1 = PrOXntQ(WtJrl)
end for

The proximal step is given by

i 1
pr0%,a(u) = argrmin { 3~ wiB + 10w
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I Advantage of SPAM

Because of the use of the proximal operator, SPAM can
accommodate for a non-smooth penalty term Q(-).

We will consider:
m 2 e Qw)= §||w||§
m Elastic Net, i.e. Q(w) = gHwH% + Bil|w|?

[Zou & Hastie (2005)]
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I Convergence Analysis: Assumptions

The convergence results are established based on the following
two assumptions:

m (A1) Assume that Q(-) is B-strongly convex.

m (A2) There exists an M > 0 such that ||x|| < M for any x € X.
Furthermore, we define the following constants:
s = p
CGM = 75z GmM=—""—

) 4 ’ ﬁZ 2

128M (1+ t5557)

We use the conventional notation that for any T € N,
Nr={1,..., T}
Let w* denote the optimal solution of formulation (8), i.e.,

w" = arg min {E[F (. a(w), b(w). a(w); z)] + 2(w))}.
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I Convergence Analysis

Theorem

Under the assumptions (A1), (A2), and choosing step sizes with
some 6 € (0,1) in the form of {n; = Cfg)”’ : t € N}, the algorithm
SPAM achieves the following:

E[|wrs1 —w*|?] = O(T~7)
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I Convergence Analysis

Theorem

Under the assumptions of (A1), (A2), and choosing step sizes

{ne = [Cam(t + 1)] 71 : t € N}, the algorithm SPAM achieves the
following:

5 log T
Effwr-s - w2 = 0 (£T)

The convergence of SPAM can achieve O(1/T) up to a
logarithmic term, which matches the optimal rate of standard
stochastic gradient descent
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I QOutline

Experiments
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Evaluation on Test Data
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Online Learning: OPAUC [Gao et al. (2013)]; OAMseq and
OAMgra [Zhao et al. (2011)]

Batch Learning: B-SVM-OR and B-LS-SVM [T. Joachims

(2006)]

Data SPAM-L? SPAM-NET SOLAM OPAUC OAM,eq OAMg;a B-LS-SVM
diabetes | .8272+.0277 | .8085+.0431 | .8128+.0304 | .8309+.0350 | .8264+.0367 | .8262+.0338 | .8325+.0329
fourclass | .8210+.0203 | .8211+.0205 | .8213+.0209 | .8310+.0251 | .8306+.0247 | .8295+.0251 | .8309+.0309
german .7942+.0388 | .7937+.0386 | .7778+.0373 | .7978+.0347 | .7747+.0411 | .7723+.0358 | .7994+.0343

splice .9263+.0091 | .9267+.0090 | .9246+.0087 | .9232+.0099 | .8594+.0194 | .8864+.0166 | .9245+.0092

usps .9868+.0032 | .9855+.0029 | .9822+4.0036 | .9620+.0040 | .9310+.0159 | .9348+.0122 | .9634+.0045

a%a .8998+£.0046 | .8980+.0047 | .8966+.0043 | .9002+.0047 | .8420£.0174 | .8571+.0173 | .8982+4.0028

mnist .9254+.0025 | .9132+.0026 | .9118+.0029 | .9242+.0021 | .8615+.0087 | .8643+.0112 | .9336+.0025
acoustic | .8120+.0030 | .8109+.0028 | .8099+.0036 | .8192+.0032 | .71134.0590 | .7711+.0217 | .8210+.0033

ijennl .9174+.0024 .9155+-.0024 .9129+.0030 | .9269+.0021 | .9209+.0079 | .9100+.0092 | .9320+.0037
covtype | .9504+.0011 | .9508+.0011 | .9503+.0012 | .8244+.0014 | .7361+.0317 | .7403+.0289 | .8222+.0014
sector .8768+.0126 | .9077+.0104 | .8767+.0129 | .9292+.0081 | .9163+.0087 | .9043+.0100 -
news20 .8708+.0069 | .8704+ .0070 | .8712+.0073 | .8871+.0083 | .8543+.0099 | .8346+.0094 -




I Running Time Comparison
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I Conclusion

We proposed a novel stochastic proximal algorithm (SPAM)
for AUC maximization with general penalty terms.

SPAM can achieve a convergence rate of O(1/T) up to a
logarithmic term for strongly convex objective functions.

Thank you for attending!
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