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Classification

Given data {zi = (xi , yi ) ∈ Z : i = 1...T} , where X ⊆ Rd

and Y = {±1}, we wish to learn the following function

f (xi ) = sign(wT xi ) (1)

where w ∈ Rd is the parameter to be learned.
Evaluation by 0-1 loss is usually replaced by a convex
surrogate loss φ : R → R+ satisfying I[s<0] ≤ φ(s).

Least Square Loss: φ(s) = (1− s)2

Hinge Loss: φ(s) = (1− s)+

Empirical Risk Minimization (ERM)

w∗ = argmin
w

1

T

T

i=1

φ(yiw
T xi ). (2)
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Stochastic Gradient Descent

Stochastic Gradient Descent

Initialize w1, and for any t ≥ 1, draw sample zt = (xt , yt) at
random, and then

wt+1 = wt − ηt∇wφ(ytw
T xt) (3)

The idea of SGD dates back to Robbins and Monroe (1951).

The literature on SGD is extensive [Bottou & Cunn (2004);
Srebro & Tewari (2010); Moulines & Bach (2011);...].

Most of the literature focuses on the misclassification error or
accuracy.
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Accuracy

Consider the case for a sample of 1000 instances with 990
“true” negative instances and 10 “true” positive instances.
Suppose we obtain the following results:

True +1 True -1

Predicted +1 1 11

Predicted -1 9 979

The misclassification error (or classification accuracy) could
be misleading for real world applications.

This classifier has 98% accuracy, but told us very little.

For this reason, we consider the use of AUC.
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Receiver Operating Characteristic (ROC) Curve

Given a confusion matrix, a
ROC curve is a plot of the
False Positive Rate (FPR)
on the x-axis and the True
Positive Rate (TPR) on the
y-axis.

TPR =
TP

TP + FN

FPR =
FP

FP + TN

[Hanley & McNeil (1982); Bradley (1997); Fawcett (2006)]
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Probabilistic Definition of AUC

Definition

For a linear scoring function f (x) = wT x , AUC is

AUC (w) = Pr(wT x ≥ wT x ′|y = 1, y ′ = −1)

= 1− E[I[wT (x−x ′)<0]|y = 1, y ′ = −1]

where (x , y), (x ′, y ′) ∈ Z = X × Y are independent.

In imbalanced classification and information retrieval, one
often uses AUC (area under the ROC curve).

AUC is expressed as a sum of pairwise losses between
instances from different classes, which is quadratic in the
number of received training examples
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AUC Maximization

AUC maximization can be easily modified to a minimization
problem:

min
w

E[I[wT (x−x ′)<0]|y = 1, y ′ = −1] + Ω(w)

where Ω(·) is a penalty function.

Replacing the indicator function by the least square loss, AUC
optimization can be formulated as:

min
w

E[(1−wT (x − x ′))2|y = 1, y ′ = −1] + Ω(w) (4)
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AUC Maximization

When ρ is a uniform distribution over the finite data
{zi = (xi , yi ) ∈ Z : i = 1...T}, AUC maximization reduces to

min
w

1

n+n−

n

i ,j=1

(1−wT (xi − xj))
2Iyi=1∧yj=−1 + Ω(w)

where n+ and n− denote the number of instances in the
positive and negative classes, respectively.

Key Challenges

What happens if the dataset is very large?
How to handle streaming data?
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Summary of Existing Work

Algorithm Loss Penalty Storage Iteration Rate

OAM General L2 O(td) O(td) O(1/
√
T )

OLP General L2 O(td) O(td) O(1/
√
T )

OPAUC Least-Square L2 O(d2) O(d2) O(1/
√
T )

SOLAM Least-Square L2 O(d) O(d) O(1/
√
T )

New Alg. Least-Square General O(d) O(d) O(1/T )

[Zhao et al. (2012); Kar et al. (2014); Gao et al (2013); Ying et al. (2016)]
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Previous Work

Theorem

AUC optimization (4) in the linear case is equivalent to the
following saddle point problem:

min
w,a,b

max
α∈R


E[F (w, a, b,α; z)] + Ω(w)


, (5)

where the expectation is with respect to z = (x , y), and
F (w, a, b,α; z) is a quadratic function involving p = Pr(y = 1).

AUC maximization can be reduced to a single integral.

[Ying et al. (2016)]
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Motivation of Key Ideas

SOLAM

Upon receiving data zt , perform

1. Gradient descent on the primal variables v = (w, a, b)

vt+1 = vt − γt∂vF (vt ,αt , zt)

2. Gradient ascent on the dual variable α:

αt+1 = αt + γt∂αF (vt ,αt , zt)

This has a theoretical convergence rate of O(1/
√
T ), but can

we do better?

[Nemirovski et al. (2009); Ying et al. (2016)]
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Our Key Ideas

For fixed w, it is easy to see that the optima for a, b, and α
are respectively achieved at

a(w) = w⊤E[x |y = 1], b(w) = w⊤E[x |y = −1], (6)

α(w) = w⊤(E[x |y ′ = −1]− E[x |y = 1]). (7)

Using the updates for a, b, and α, our new AUC optimization
formulations becomes

min
w

E[F (w, a(w), b(w),α(w); zt)] + Ω(w) (8)
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Stochastic Proximal AUC Maximization

SPAM

Input: Step sizes {ηt > 0 : t ∈ N}
Initialize w1 ∈ Rd .
for t = 1 to T do

Receive sample zt = (xt , yt)
Compute a(wt), b(wt), and α(wt) according to (6) and (7).
ŵt+1 = wt − ηt∂1F (wt , a(wt), b(wt),α(wt); zt)
wt+1 = proxηtΩ(ŵt+1)

end for

The proximal step is given by

proxηtΩ(u) = argmin


1

2
u −w22 + ηtΩ(w)
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Advantage of SPAM

Because of the use of the proximal operator, SPAM can
accommodate for a non-smooth penalty term Ω(·).
We will consider:

L2, i.e. Ω(w) = β
2 w22

Elastic Net, i.e. Ω(w) = β
2 w22 + β1w21

[Zou & Hastie (2005)]
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Convergence Analysis: Assumptions

The convergence results are established based on the following
two assumptions:

(A1) Assume that Ω(·) is β-strongly convex.
(A2) There exists an M > 0 such that x ≤ M for any x ∈ X .

Furthermore, we define the following constants:

Cβ,M :=
β

128M4
Cβ,M =

β

(1 + β2

128M4 )2

We use the conventional notation that for any T ∈ N,
NT = {1, . . . ,T}.
Let w∗ denote the optimal solution of formulation (8), i.e.,

w∗ = arg min
w∈Rd

{E[F (w, a(w), b(w),α(w); zt)] + Ω(w))}.
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Convergence Analysis

Theorem

Under the assumptions (A1), (A2), and choosing step sizes with

some θ ∈ (0, 1) in the form of

ηt =

Cβ,M

tθ
: t ∈ N


, the algorithm

SPAM achieves the following:

E[wT+1 −w∗2] = O(T−θ)
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Convergence Analysis

Theorem

Under the assumptions of (A1), (A2), and choosing step sizes
{ηt = [ Cβ,M(t + 1)]−1 : t ∈ N}, the algorithm SPAM achieves the
following:

E[wT+1 −w∗2] = O

logT

T



The convergence of SPAM can achieve O(1/T ) up to a
logarithmic term, which matches the optimal rate of standard
stochastic gradient descent
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Evaluation on Test Data

Online Learning: OPAUC [Gao et al. (2013)]; OAMseq and
OAMgra [Zhao et al. (2011)]

Batch Learning: B-SVM-OR and B-LS-SVM [T. Joachims

(2006)]

Data SPAM-L2 SPAM-NET SOLAM OPAUC OAMseq OAMgra B-LS-SVM

diabetes .8272±.0277 .8085±.0431 .8128±.0304 .8309±.0350 .8264±.0367 .8262±.0338 .8325±.0329
fourclass .8210±.0203 .8211±.0205 .8213±.0209 .8310±.0251 .8306±.0247 .8295±.0251 .8309±.0309
german .7942±.0388 .7937±.0386 .7778±.0373 .7978±.0347 .7747±.0411 .7723±.0358 .7994±.0343
splice .9263±.0091 .9267±.0090 .9246±.0087 .9232±.0099 .8594±.0194 .8864±.0166 .9245±.0092
usps .9868±.0032 .9855±.0029 .9822±.0036 .9620±.0040 .9310±.0159 .9348±.0122 .9634±.0045
a9a .8998±.0046 .8980±.0047 .8966±.0043 .9002±.0047 .8420±.0174 .8571±.0173 .8982±.0028
mnist .9254±.0025 .9132±.0026 .9118±.0029 .9242±.0021 .8615±.0087 .8643±.0112 .9336±.0025

acoustic .8120±.0030 .8109±.0028 .8099±.0036 .8192±.0032 .7113±.0590 .7711±.0217 .8210±.0033
ijcnn1 .9174±.0024 .9155±.0024 .9129±.0030 .9269±.0021 .9209±.0079 .9100±.0092 .9320±.0037
covtype .9504±.0011 .9508±.0011 .9503±.0012 .8244±.0014 .7361±.0317 .7403±.0289 .8222±.0014
sector .8768±.0126 .9077±.0104 .8767±.0129 .9292±.0081 .9163±.0087 .9043±.0100 -
news20 .8708±.0069 .8704± .0070 .8712±.0073 .8871±.0083 .8543±.0099 .8346±.0094 -
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Running Time Comparison
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Conclusion

We proposed a novel stochastic proximal algorithm (SPAM)
for AUC maximization with general penalty terms.

SPAM can achieve a convergence rate of O(1/T ) up to a
logarithmic term for strongly convex objective functions.

Thank you for attending!
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