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SGD for Massive Streaming Data

Our Algorithm  Experiments

Data {z; = (x;,¥y;)) € Z:i=1...T} ,where X C Randy = {1} Key observation: for fixed w, SPAM-L2: Our proposed algorithm for AUC maximization with Q(w) = g||w||2.

(binary classification). T'is continuously increasing (streaming data). E[(1—w, (x—x'))|y =1,y’ = —1] = minmaxEz[F(W, a, b, o; 2)]. SPAM-NET: Our proposed algorithm for AUC maximization with elastic net 2(w) = 5||w||2 + B4 ||w]|1-
The qual_lt_y Of. a classifier fw(x) = sign(w ' x) can be measured by ab SOLAM: Stochastic online algorithm for AUC maximization [Ying et al. (2016)].

mlscIaTssn‘lcatlon error (accuracy)-related loss qb(yvrTx). For exam_pgle, 20-1 loss In particular, the optima are achieved at OPAUC: The one-pass AUC optimization algorithm with square loss function [Gao et al. (2013)]

gt(wr\: );_) Z I[}cli"NT)t(%O] of Iiasétéguafre l05S (W X)f = (1 —yw x)=. | a(w) = wTIE[x|y =1], b(w) = wTIE[x|y = —1], (3) OAMseq: The OAM algorithm with reservoir sampling and sequential updating method [Zhao et al. (2011)].
aszzrr?es I{Czt r=a ('ﬁ: yt)e}sfseir.]i.cgl., the)n Osrci[(;cgerﬁ?;rg:rag;gﬁgfves;measure- aw) = wT (E[x]y’ = —1] — E[x|y = 1]). () B-LS-SVM: A batch learning algorithm which optimizes the pairwise least square loss [Joachims (20086)].

New algorithm: update w using (proximal) gradient descent while

. Name # Instances #Dim Name # Instances # Dim Name # Instances # Dim
a, b, o are given by (3) and (4)

"
Wipt = Wp — s V(W] X;)

The literature on SGD for accuracy is vast [Bach (2011); Bottou and Le Cun Alaorith ~SPA diabetes /68 8 mnist 60,000 780 a9a 32,561 123
(2003); Nemirovski et al. (2008); Shamir and Zhang (2012); Srebro and Q‘I’r_'tt_ I’“ 1:5 d fourclass 862 8 |acoustic 78,823 50 news20 15,935 62,061
I7q'ewar|11(2010); Rakhfllggz;ll. (2102); Ying antq Pontlg(ZOOi),'...;[] o) ; fglrli Ee_l“;:) %_ do. german 1000 24 | ijcnn1 141 691 20 usps 9.298 256
ougn summary o S convergence: time and per-iteration cos ; ' T :
convergence rate is of O(1/4/t), and O(1/1) if strongly convex. 3 Receive sample zy = (Xt, yt) | splice 3175 60 |covtype| 981,012 o4 | sector 3,619 95,19/
4 Compute a(wy), b(w), and a(wy) according to (3) and (4). Table: Statistics about the datasets.
—— 50 Wiiq = Wt — 001 F(Wy, a(wy), b(Wt), a(Wp); z1)
AUC Maximization o Wit = ProXge(Wes) Data = SPAM-L2 | SPAM-NET | SOLAM | OPAUC | OAMy, | B-LS-SVM
| | | | diabetes |.8272+.0277| .8085+.0431 |.8128+.0304 | .8309+.0350 .8264+.0367 .8325+.0329
HO;V?V% aceuracy 'Sthot Sx'tab'e fgf 'Thpoggné'eamm& Lag;s such o 84 F denotes the partial derivative of F wrt the first argument. fourclass .82114.0205 .82134:.0209 .8310+.0251 .83064.0247.82954-.0251 | .8309+.0309
IMpalancea ciassiiication. Area unaer tne curve IS a4 Sultable : : . 41 1 1 1 1 41
performance measure in imbalanced classification (anomaly detection and Proximal Mapping: prox;,q(u) = arg minw {%”” — wlj5 + "tQ(W)} : german |./942x.0388) ./93/x.0386 |.7/7/8x.0373|.79/8x.03471.774/1.04111.79941.0343
. . . . . . | . y . _ splice |.9263+.0091 .9267+.0090 .9246-+.0087 |.92324.0099 .8594+.0194 .9245+.0092
cancer diagnosis), and information retrieval. [Hanley and McNeil (1982 Our algorithm SPAM shares the spirit as the online forward-backward
g ); [ y (1982), ' . . | . .
Elkan (2001); Cortes and Mohri (2003); Fawcett, 2006] splitting /Duchi and Singer (2009)] and stochastic proximal gradient usps |.9868+.0032 .9855+.0029 |.9822+.0036.9620+.0040|.9310+.0159|.9634+.0045
Definition of AUC Score: For a linear scoring function f(x) = wTx, its AUC methods [Rosasco et al. (2014)]. However, there are two main a9a |.8998-+.0046 .8980-+.0047 |.8966-+.0043.90024.0047 .8420+.0174 .89824.0028
score [Clemencon et al. (2008)]is defined by | differences between ours and previous proximal splitting algorithms: mnist |.92544.0025 .91324.0026 .9118+.0029 .9242+.0021 .8615:+.0087 .9336-+.0025
- » They focused on the accuracy performance where the objective function is a single :
AUC(W) = Pr(wTx > wTxly = 1.y = —1) summation/integral over individual samples. acoustic |.8120+.0030 .8109+.0028 .8099+.0036|.81924+.0032 .7113+.0590 .8210+.0033
= = y=,LY = , > The convergence proofs there critically depend on boundedness assumptions: the jcnn1  1.91744.0024 | .9155+.0024 |.91294-.0030|.9269+-.0021 .9209+.0079|.9320+.0037
=1 =Bl (x—x)<gly =1,y = —1; boundedness of the iterates and/or the stochastic gradients stochastic gradient; our covtype .9504-+.0011 .9508£.0011 .9503+.0012 .8244+.0014 .73614.0317 .82224.0014

proof for SPAM does not need these boundedness assumptions.

Replacing the indicator function by the least square loss, maximizing AUC sector .8768+.0126| .9077=+.0104 |.876/£.0129.9292+.0081.9163+.0087 -
can be formulated as: news20 .8708+.0069 .8704+ .00/0.8712+.00/3 .88711+.0083|.8543+.0099 -

minE[(1 —w'(x — x))?ly =1,y = —1] + Q(w) (1) Convergence Analysis Table: Comparison of the testing AUC values (mean-std.)

where €2(-) is a convex penalty term.

Question: How to design SGD like algorithms on par with the accuracy case? (A1) Assume that £2(-) is B-strongly convex. T —_— 08
Challenge: The objective function is a double integral (summation) over pairs (A2) There exists an M > 0 such that ||X2|| < Mforany x € & 05} - e —— _
ile, | | ' ' . B r _ B 2 I e L J——— s ———————
]?f s{__amzletg, while, in pract:cqe,(jgr]g DlOES N|OT receive pairs rather a Let. Ca,m = 128 Ca.m _.5./(1.+ 128M4) ,.and w* denote the ol . o _ f
ast-upaaling sequence of Individual samples. optimal solution of AUC maximization formulation (1). Al - 5' olf
(j) | QMS:‘:: | () o ;:
. 08| s 1 3 os ; 35 ||
Previous Work A L 2
Under the assumptions (A1), (A2), and choosing step sizes with some | —SPAN? N — PN nE — L
| | 07H ‘ 07 ' !
Various work [Wang et al. (2008), Z1hao e;t_ e%/. (2012)] de¥eloped.SGD/OGD 0 € (0,1) in the form of {n; = % : t € N}, the algorithm | +SOLAM | : +SOLAM e +SOLAM |
based on the local error Ly(W) = 3¢ >;_; Loss(yz, W ' X;) which have SPAM achieves the following: i OPAUC i OPAUC | I OPAUC
storage and per-iteration costs O(td) at time t i 121 — O(T—F 0 —————————————— S e— e
Gao et al. (2013) focused on least square loss; Notice that it only needs to [liwrsr — VX I71=0(T77). Time (s) Time (9 Time s)
update the covariance matrix which have storage and time complexity (’)(dz). In particular, if we choose {n; = [Cz m(t + 1)]—1 : t € N}, then there @) splice ) usps o) aga
Recent work [Ying et al. (2016)] showed that (1) is equivalent to the saddle holds Figure: AUC vs. CPU running time
ooint problem (SPP): o log T Jure: | J
, Effwrir —w' 7] =0 :
min max{EZ[F(w, a,b,a;z)] + Q(w)}, (2) T .
w,a,b a€R Conclusion and Future Work

where F(w, a, b, o; z) is quadratic (see the paper). The convergence of SPAM can achieve O(1/T) up to a logarithmic

The algorithm there is based on gradient descent on primal variables term, which matches the optimal rate of standard SGD for accuracy We proposed a novel stochastic proximal algorithm (SPAM) for AUC maximization with general penalty terms.

(W, a, b) and ascent on dual variable . Itis known that such stochastic with the same storage and per-iteration cost. SPAM can achieve a convergence rate of O(1/T) up to a logarithmic term for strongly convex objective
first-order algorithm has an optimal rate O(1/1). functions.

Critical idea in the proof: the stochastic gradient
Future work:

Algorithm Loss Q |Storage lteration| Rate 01F(w¢, a(wg), b(wt), a(wy); 2;) is an unbiased estimator of the true > Stochastic vari duction alacrithms for AUC maximziat
5 dient Swf(wy) = SwE[(1 — WT(X B X'))2| — 1. v = 1], ie. ochastic variance re uction algorithms for maximziation
OAM General L O(td) | O(td) O(1/VT) gra t t y » Y ; » AUC maximization with deep neural network
OPAUC _east-Square L2 O(d2) (’)(d2) o1 /\/T) » Learning theory for AUC maximization (consistency and optimal generalization bounds)
SOLAM east-Square /2 o)  o(d) o /\/T') 0f(w¢) = Ez[01F(wy¢, a(wy), b(wg), a(wy); 21)], » Can SPAM achieve a convergence rate of ©(1/T) without strong convexity?
SPAM (this paper) | Least-Square | General| O(d) @ O(d) | O(1/T)




