Stochastic Proximal Algorithms for AUC Maximization

Michael Natole, Jr.¹, Yiming Ying¹, Siwei Lyu²

Department of Mathematics & Statistics¹, Department of Computer Science², University at Albany, SUNY

SGD for Massive Streaming Data

- ▶ Data $\{z_i = (x_i, y_i) \in \mathbb{Z} : i = 1...T\}$, where $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} = \{\pm 1\}$ (binary classification). *T* is continuously increasing (streaming data). > The quality of a classifier $f_w(x) = sign(w^{\top}x)$ can be measured by
- misclassification error (accuracy)-related loss $\phi(\mathbf{w}^{\top} \mathbf{x})$. For example, 0-1 loss $\phi(\mathbf{y}\mathbf{w}^{\top}\mathbf{x}) = \mathbf{I}_{[\mathbf{y}\mathbf{w}^{\top}\mathbf{x}<\mathbf{0}]}$ or least square loss $\phi(\mathbf{w}^{\top}\mathbf{x}) = (\mathbf{1} - \mathbf{y}\mathbf{w}^{\top}\mathbf{x})^2$. Stochastic Gradient Descent (SGD) for accuracy performance measure:
- assume $\{z_t = (x_t, y_t)\}$ is i.i.d., then SGD performs as follows:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla_{\mathbf{w}} \phi(\mathbf{w}_t^\top \mathbf{x}_t)$$

- ▶ The literature on SGD for accuracy is vast [Bach (2011); Bottou and Le Cun (2003); Nemirovski et al. (2008); Shamir and Zhang (2012); Srebro and Tewari (2010); Rakhlin et al. (2102); Ying and Pontil (2008);....]
- **Fough summary of SGD's convergence**: time and per-iteration cost $\mathcal{O}(d)$; convergence rate is of $\mathcal{O}(1/\sqrt{t})$, and $\mathcal{O}(1/t)$ if strongly convex.

AUC Maximization

- However, accuracy is not suitable for important learning tasks such as imbalanced classification. Area under the ROC curve (AUC) is a suitable performance measure in imbalanced classification (anomaly detection and cancer diagnosis), and information retrieval. [Hanley and McNeil (1982); Elkan (2001); Cortes and Mohri (2003); Fawcett, 2006]
- **Definition of AUC Score:** For a linear scoring function $f(x) = w^T x$, its AUC score [Clemencon et al. (2008)] is defined by

$$AUC(w) = \Pr(w^T x \ge w^T x' | y = 1, y' = -1)$$

= $1 - \mathbb{E}[\mathbb{I}_{[w^T(x-x')<0]} | y = 1, y' = -1].$

Replacing the indicator function by the least square loss, maximizing AUC can be formulated as:

$$\min_{\mathbf{w}} \mathbb{E}[(1 - \mathbf{w}^{\mathsf{T}}(\mathbf{x} - \mathbf{x}'))^2 | \mathbf{y} = 1, \mathbf{y}' = -1] + \Omega(\mathbf{w})$$

where $\Omega(\cdot)$ is a convex penalty term.

Question: How to design SGD like algorithms on par with the accuracy case? **Challenge:** The objective function is a double integral (summation) over pairs of samples while, in practice, one DOES NOT receive pairs rather a fast-updating sequence of individual samples.

Previous Work

- Various work [Wang et al. (2008); Zhao et al. (2012)] developed SGD/OGD based on the local error $\mathcal{L}_t(w) = \frac{1}{t-1} \sum_{i=1}^{t-1} \text{Loss}(y_t, w^\top x_i)$ which have storage and per-iteration costs $\mathcal{O}(td)$ at time t
- ► Gao et al. (2013) focused on least square loss; Notice that it only needs to update the covariance matrix which have storage and time complexity $\mathcal{O}(d^2)$. Recent work [Ying et al. (2016)] showed that (1) is equivalent to the saddle point problem (SPP):

$$\min_{\mathbf{w}, \boldsymbol{a}, \boldsymbol{b}} \max_{\alpha \in \mathbb{R}} \{ \mathbb{E}_{\boldsymbol{z}} [\boldsymbol{F}(\mathbf{w}, \boldsymbol{a}, \boldsymbol{b}, \alpha; \boldsymbol{z})] + \Omega(\mathbf{w}) \},$$

where $F(w, a, b, \alpha; z)$ is quadratic (see the paper).

The algorithm there is based on gradient descent on primal variables (w, a, b) and ascent on dual variable α . It is known that such stochastic first-order algorithm has an optimal rate $\mathcal{O}(1/\sqrt{t})$.

Algorithm	Loss	Ω	Storage	Iteration	Rate
OAM	General	L ²	$\mathcal{O}(td)$	$\mathcal{O}(td)$	$\mathcal{O}(1/\sqrt{1/v})$
OPAUC	Least-Square	L ²	$\mathcal{O}(d^2)$	$\mathcal{O}(d^2)$	$\mathcal{O}(1/1/\sqrt{1/\sqrt{1/\sqrt{1/\sqrt{1/\sqrt{1/\sqrt{1/\sqrt{1/\sqrt{1/\sqrt{$
SOLAM	Least-Square	L ²	$\mathcal{O}(d)$	$\mathcal{O}(d)$	$O(1/\sqrt{1/v})$
SPAM (this paper)	Least-Square	General	$\mathcal{O}(d)$	$\mathcal{O}(d)$	<i>O</i> (1/

(1)

(2)

Our Algorithm

► Key observation: for fixed **w**, $\mathbb{E}[(1-\mathsf{w}_t^\top(\mathbf{x}-\mathbf{x}'))^2|\mathbf{y}=1,\mathbf{y}'=-1]=\min_{a,b}\max_{\alpha}\mathbb{E}_{\mathbf{z}}[F(\mathsf{w},a,b,\alpha;\mathbf{z})].$ In particular, the optima are achieved at $a(\mathbf{w}) = \mathbf{w}^{\top} \mathbb{E}[\mathbf{x} | \mathbf{y} = 1], \quad b(\mathbf{w}) = \mathbf{w}^{\top} \mathbb{E}[\mathbf{x} | \mathbf{y} = -1],$ (3) $\alpha(\mathsf{w}) = \mathsf{w}^{\top}(\mathbb{E}[\mathbf{x}|\mathbf{y}' = -1] - \mathbb{E}[\mathbf{x}|\mathbf{y} = 1]).$ (4) New algorithm: update **w** using (proximal) gradient descent while $\boldsymbol{a}, \boldsymbol{b}, \alpha$ are given by (3) and (4) Algorithm 1 : SPAM : Initialize $\mathbf{w_1} \in \mathbb{R}^d$. 2: for t = 1 to T do Receive sample $z_t = (x_t, y_t)$ Compute $a(w_t)$, $b(w_t)$, and $\alpha(w_t)$ according to (3) and (4). $\hat{w}_{t+1} = w_t - \eta_t \partial_1 F(w_t, a(w_t), b(w_t), \alpha(w_t); z_t)$ 6: $\mathbf{w}_{t+1} = \operatorname{prox}_{\eta_t \Omega}(\hat{\mathbf{w}}_{t+1})$ end for $\triangleright \partial_1 F$ denotes the partial derivative of F wrt the first argument.

- $\vdash \text{Proximal Mapping: } \operatorname{prox}_{\eta_t \Omega}(\boldsymbol{u}) = \arg \min_{\boldsymbol{w}} \left\{ \frac{1}{2} \| \boldsymbol{u} \boldsymbol{w} \|_2^2 + \eta_t \Omega(\boldsymbol{w}) \right\}.$ Our algorithm SPAM shares the spirit as the online forward-backward splitting [Duchi and Singer (2009)] and stochastic proximal gradient
- methods [Rosasco et al. (2014)]. However, there are two main differences between ours and previous proximal splitting algorithms: ► They focused on the accuracy performance where the objective function is a single
- summation/integral over individual samples. The convergence proofs there critically depend on boundedness assumptions: the
- boundedness of the iterates and/or the stochastic gradients stochastic gradient; our proof for SPAM does not need these boundedness assumptions.

Convergence Analysis

- \blacktriangleright (A1) Assume that $\Omega(\cdot)$ is β -strongly convex.
- (A2) There exists an M > 0 such that $||\mathbf{x}|| \le M$ for any $\mathbf{x} \in \mathcal{X}$. ► Let $C_{\beta,M} := \frac{\beta}{128M^4}$, $\widetilde{C}_{\beta,M} = \beta/(1 + \frac{\beta^2}{128M^4})^2$, and w* denote the
- optimal solution of AUC maximization formulation (1).

Theorem

Under the assumptions (A1), (A2), and choosing step sizes with some $\theta \in (0, 1)$ in the form of $\{\eta_t = \frac{C_{\beta, M}}{t\theta} : t \in \mathbb{N}\}$, the algorithm SPAM achieves the following:

$$\mathbb{E}[\|\mathbf{w}_{T+1} - \mathbf{w}^*\|^2] = \mathcal{O}(T^{-\theta}).$$

In particular, if we choose $\{\eta_t = [\widetilde{C}_{\beta,M}(t+1)]^{-1} : t \in \mathbb{N}\}$, then there holds

$$\mathbb{E}[\|\mathbf{w}_{T+1} - \mathbf{w}^*\|^2] = \mathcal{O}\left(\frac{\log T}{T}\right).$$

- > The convergence of SPAM can achieve $\mathcal{O}(1/T)$ up to a logarithmic term, which matches the optimal rate of standard SGD for accuracy with the same storage and per-iteration cost.
- Critical idea in the proof: the stochastic gradient $\partial_1 F(w_t, a(w_t), b(w_t), \alpha(w_t); z_t)$ is an unbiased estimator of the true gradient $\partial_{\mathbf{W}} f(\mathbf{w}_t) = \partial_{\mathbf{W}} \mathbb{E}[(1 - \mathbf{w}_t^\top (\mathbf{x} - \mathbf{x}'))^2 | \mathbf{y} = 1, \mathbf{y}' = -1], \text{ i.e. }$

$$\partial f(\mathbf{w}_t) = \mathbb{E}_{z_t}[\partial_1 F(\mathbf{w}_t, \mathbf{a}(\mathbf{w}_t), \mathbf{b}(\mathbf{w}_t), \alpha(\mathbf{w}_t); z_t)],$$

Experiments

- **SPAM-** L^2 : Our proposed algorithm for AUC maximization with $\Omega(w) = \frac{\beta}{2} ||w||^2$.
- **SPAM-NET**: Our proposed algorithm for AUC maximization with elastic net $\Omega(w) = \frac{\beta}{2} ||w||^2 + \beta_1 ||w||_1$. **SOLAM:** Stochastic online algorithm for AUC maximization [Ying et al. (2016)].
- OPAUC: The one-pass AUC optimization algorithm with square loss function [Gao et al. (2013)]
- OAMseq: The OAM algorithm with reservoir sampling and sequential updating method [Zhao et al. (2011)].
- **B-LS-SVM**: A batch learning algorithm which optimizes the pairwise least square loss [Joachims (2006)].

Name	# Instances	#Dim	Name	# Instances	# Dim	Name	# Instances	# Dim
diabetes	768	8	mnist	60,000	780	a9a	32,561	123
fourclass	862	8	acoustic	78,823	50	news20	15,935	62,061
german	1000	24	ijcnn1	141,691	22	usps	9,298	256
splice	3175	60	covtype	581,012	54	sector	9,619	55,197

Table: Statistics about the datasets.

SPAM- <i>L</i> ²	SPAM-NET	SOLAM	OPAUC	OAM _{seq}	B-LS-SVM
$.8272 \pm .0277$	$.8085 \pm .0431$.8128±.0304	$.8309 \pm .0350$	$.8264 \pm .0367$	$.8325 \pm .0329$
$.8211 \pm .0205$	$.8213 \pm .0209$	$.8310 \pm .0251$.8306±.0247	$.8295 \pm .0251$	$.8309 \pm .0309$
$.7942 \pm .0388$	$.7937 \pm .0386$	$.7778 \pm .0373$.7978±.0347	.7747±.0411	$.7994 \pm .0343$
$.9263 \pm .0091$	$.9267 \pm .0090$	$.9246 \pm .0087$	$.9232 \pm .0099$.8594±.0194	$.9245 \pm .0092$
$.9868 \pm .0032$	$.9855 \pm .0029$	$.9822 \pm .0036$	$.9620 \pm .0040$	$.9310 \pm .0159$	$.9634 \pm .0045$
.8998±.0046	$.8980 \pm .0047$	$.8966 \pm .0043$	$.9002 \pm .0047$.8420±.0174	$.8982 \pm .0028$
$.9254 \pm .0025$	$.9132 \pm .0026$.9118±.0029	$.9242 \pm .0021$	$.8615 \pm .0087$	$.9336 \pm .0025$
$.8120 \pm .0030$	$.8109 \pm .0028$	$.8099 \pm .0036$	$.8192 \pm .0032$	$.7113 \pm .0590$	$.8210 \pm .0033$
$.9174 \pm .0024$	$.9155 \pm .0024$.9129±.0030	$.9269 \pm .0021$.9209±.0079	$.9320 \pm .0037$
$.9504 \pm .0011$	$.9508 \pm .0011$.9503±.0012	$.8244 \pm .0014$	$.7361 \pm .0317$	$.8222 \pm .0014$
.8768±.0126	$.9077 \pm .0104$.8767±.0129	$.9292 \pm .0081$	$.9163 \pm .0087$	-
.8708±.0069	$.8704 \pm .0070$	$.8712 \pm .0073$	$.8871 \pm .0083$	$.8543 \pm .0099$	-
	SPAM- L^2 .8272±.0277 .8211±.0205 .7942±.0388 .9263±.0091 .9868±.0032 .8998±.0046 .9254±.0025 .8120±.0030 .9174±.0024 .9504±.0011 .8768±.0126 .8708±.0069	SPAM-L2SPAM-NET.8272±.0277.8085±.0431.8211±.0205.8213±.0209.7942±.0388.7937±.0386.9263±.0091.9267±.0090.9868±.0032.9855±.0029.8998±.0046.8980±.0047.9254±.0025.9132±.0026.8120±.0030.8109±.0028.9174±.0024.9155±.0024.9504±.0011.9508±.0011.8768±.0126.9077±.0104.8708±.0069.8704±.0070	SPAM-L2SPAM-NETSOLAM.8272±.0277.8085±.0431.8128±.0304.8211±.0205.8213±.0209.8310±.0251.7942±.0388.7937±.0386.7778±.0373.9263±.0091.9267±.0090.9246±.0087.9868±.0032.9855±.0029.9822±.0036.8998±.0046.8980±.0047.8966±.0043.9254±.0025.9132±.0026.9118±.0029.8120±.0030.8109±.0028.8099±.0036.9174±.0024.9155±.0024.9129±.0030.9504±.0011.9508±.0011.9503±.0012.8768±.0126.9077±.0104.8767±.0129.8708±.0069.8704±.0070.8712±.0073	SPAM-L2SPAM-NETSOLAMOPAUC.8272±.0277.8085±.0431.8128±.0304.8309±.0350.8211±.0205.8213±.0209.8310±.0251.8306±.0247.7942±.0388.7937±.0386.7778±.0373.7978±.0347.9263±.0091.9267±.0090.9246±.0087.9232±.0099.9868±.0032.9855±.0029.9822±.0036.9620±.0040.8998±.0046.8980±.0047.8966±.0043.9002±.0047.9254±.0025.9132±.0026.9118±.0029.9242±.0021.8120±.0030.8109±.0028.8099±.0036.8192±.0032.9174±.0024.9155±.0024.9129±.0030.9269±.0021.9504±.0011.9508±.0011.9503±.0012.8244±.0014.8768±.0126.9077±.0104.8767±.0129.9292±.0081.8708±.0069.8704±.0070.8712±.0073.8871±.0083	$\begin{array}{l lllllllllllllllllllllllllllllllllll$

Table: Comparison of the testing AUC values (mean \pm std.)

Conclusion and Future Work

- We proposed a novel stochastic proximal algorithm (SPAM) for AUC maximization with general penalty terms.
- > SPAM can achieve a convergence rate of $\mathcal{O}(1/T)$ up to a logarithmic term for strongly convex objective functions.
- Future work:
- Stochastic variance reduction algorithms for AUC maximization
- ► AUC maximization with deep neural network
- ► Learning theory for AUC maximization (consistency and optimal generalization bounds) • Can SPAM achieve a convergence rate of $\mathcal{O}(1/T)$ without strong convexity?