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SGD for Massive Streaming Data

◮ Data {zi = (xi, yi) ∈ Z : i = 1...T} , where X ⊆ Rd and Y = {±1}
(binary classification). T is continuously increasing (streaming data).

◮ The quality of a classifier fw(x) = sign(w⊤x) can be measured by
misclassification error (accuracy)-related loss φ(w⊤x). For example, 0-1 loss
φ(yw⊤x) = I[yw⊤x≤0] or least square loss φ(w⊤x) = (1 − yw⊤x)2.

◮ Stochastic Gradient Descent (SGD) for accuracy performance measure:
assume {zt = (xt, yt)} is i.i.d., then SGD performs as follows:

wt+1 = wt − ηt∇wφ(w⊤
t xt)

◮ The literature on SGD for accuracy is vast [Bach (2011); Bottou and Le Cun
(2003); Nemirovski et al. (2008); Shamir and Zhang (2012); Srebro and
Tewari (2010); Rakhlin et al. (2102); Ying and Pontil (2008);....]

◮ Rough summary of SGD’s convergence: time and per-iteration cost O(d);
convergence rate is of O(1/

√
t), and O(1/t) if strongly convex.

AUC Maximization

◮ However, accuracy is not suitable for important learning tasks such as
imbalanced classification. Area under the ROC curve (AUC) is a suitable
performance measure in imbalanced classification (anomaly detection and
cancer diagnosis), and information retrieval. [Hanley and McNeil (1982);
Elkan (2001); Cortes and Mohri (2003); Fawcett, 2006]

◮ Definition of AUC Score: For a linear scoring function f (x) = wT x , its AUC
score [Clemencon et al. (2008)] is defined by

AUC(w) = Pr(wT x ≥ wT x ′|y = 1, y ′ = −1)
= 1 − E[I[wT (x−x ′)<0]|y = 1, y ′ = −1].

◮ Replacing the indicator function by the least square loss, maximizing AUC
can be formulated as:

min
w

E[(1 − wT (x − x ′))2|y = 1, y ′ = −1] + Ω(w) (1)

where Ω(·) is a convex penalty term.
Question: How to design SGD like algorithms on par with the accuracy case?
Challenge: The objective function is a double integral (summation) over pairs
of samples while, in practice, one DOES NOT receive pairs rather a
fast-updating sequence of individual samples.

Previous Work

◮ Various work [Wang et al. (2008); Zhao et al. (2012)] developed SGD/OGD
based on the local error Lt(w) = 1

t−1
t−1

j=1 Loss(yt,w⊤xj) which have
storage and per-iteration costs O(td) at time t

◮ Gao et al. (2013) focused on least square loss; Notice that it only needs to
update the covariance matrix which have storage and time complexity O(d2).

◮ Recent work [Ying et al. (2016)] showed that (1) is equivalent to the saddle
point problem (SPP):

min
w,a,b

max
α∈R


Ez[F (w, a, b,α; z)] + Ω(w)


, (2)

where F (w, a, b,α; z) is quadratic (see the paper).
◮ The algorithm there is based on gradient descent on primal variables

(w, a, b) and ascent on dual variable α. It is known that such stochastic
first-order algorithm has an optimal rate O(1/

√
t).

Algorithm Loss Ω Storage Iteration Rate
OAM General L2 O(td) O(td) O(1/

√
T )

OPAUC Least-Square L2 O(d2) O(d2) O(1/
√

T )

SOLAM Least-Square L2 O(d) O(d) O(1/
√

T )
SPAM (this paper) Least-Square General O(d) O(d) O(1/T )

Our Algorithm

◮ Key observation: for fixed w,

E[(1−w⊤
t (x −x ′))2|y = 1, y ′ = −1] = min

a,b
max
α

Ez[F (w, a, b,α; z)].

In particular, the optima are achieved at

a(w) = w⊤E[x|y = 1], b(w) = w⊤E[x|y = −1], (3)

α(w) = w⊤(E[x|y ′ = −1] − E[x|y = 1]). (4)
◮ New algorithm: update w using (proximal) gradient descent while

a, b,α are given by (3) and (4)

Algorithm 1 : SPAM
1: Initialize w1 ∈ Rd .
2: for t = 1 to T do
3: Receive sample zt = (xt, yt)
4: Compute a(wt), b(wt), and α(wt) according to (3) and (4).
5: ŵt+1 = wt − ηt∂1F (wt, a(wt), b(wt),α(wt); zt)
6: wt+1 = proxηtΩ(ŵt+1)
7: end for

◮ ∂1F denotes the partial derivative of F wrt the first argument.
◮ Proximal Mapping: proxηtΩ(u) = argminw


1
2u − w2

2 + ηtΩ(w)

.

◮ Our algorithm SPAM shares the spirit as the online forward-backward
splitting [Duchi and Singer (2009)] and stochastic proximal gradient
methods [Rosasco et al. (2014)]. However, there are two main
differences between ours and previous proximal splitting algorithms:
◮ They focused on the accuracy performance where the objective function is a single

summation/integral over individual samples.
◮ The convergence proofs there critically depend on boundedness assumptions: the

boundedness of the iterates and/or the stochastic gradients stochastic gradient; our
proof for SPAM does not need these boundedness assumptions.

Convergence Analysis

◮ (A1) Assume that Ω(·) is β-strongly convex.
◮ (A2) There exists an M > 0 such that x ≤ M for any x ∈ X .

◮ Let Cβ,M := β
128M4, Cβ,M = β/


1 + β2

128M4

2, and w∗ denote the
optimal solution of AUC maximization formulation (1).

Theorem

Under the assumptions (A1), (A2), and choosing step sizes with some
θ ∈ (0, 1) in the form of


ηt =

Cβ,M
tθ

: t ∈ N


, the algorithm
SPAM achieves the following:

E[wT+1 − w∗2] = O

T−θ.

In particular, if we choose {ηt = [Cβ,M(t + 1)]−1 : t ∈ N}, then there
holds

E[wT+1 − w∗2] = O

log T

T


.

◮ The convergence of SPAM can achieve O(1/T ) up to a logarithmic
term, which matches the optimal rate of standard SGD for accuracy
with the same storage and per-iteration cost.

◮ Critical idea in the proof: the stochastic gradient
∂1F (wt, a(wt), b(wt),α(wt); zt) is an unbiased estimator of the true
gradient ∂wf (wt) = ∂wE[(1 − w⊤

t (x − x ′))2|y = 1, y ′ = −1], i.e.

∂f (wt) = Ezt[∂1F (wt, a(wt), b(wt),α(wt); zt)],

Experiments

◮ SPAM-L2: Our proposed algorithm for AUC maximization with Ω(w) = β
2w2.

◮ SPAM-NET: Our proposed algorithm for AUC maximization with elastic net Ω(w) = β
2w2 + β1w1.

◮ SOLAM: Stochastic online algorithm for AUC maximization [Ying et al. (2016)].
◮ OPAUC: The one-pass AUC optimization algorithm with square loss function [Gao et al. (2013)]
◮ OAMseq: The OAM algorithm with reservoir sampling and sequential updating method [Zhao et al. (2011)].
◮ B-LS-SVM: A batch learning algorithm which optimizes the pairwise least square loss [Joachims (2006)].

Name # Instances #Dim Name # Instances # Dim Name # Instances # Dim
diabetes 768 8 mnist 60,000 780 a9a 32,561 123
fourclass 862 8 acoustic 78,823 50 news20 15,935 62,061
german 1000 24 ijcnn1 141,691 22 usps 9,298 256
splice 3175 60 covtype 581,012 54 sector 9,619 55,197

Table: Statistics about the datasets.

Data SPAM-L2 SPAM-NET SOLAM OPAUC OAMseq B-LS-SVM
diabetes .8272±.0277 .8085±.0431 .8128±.0304 .8309±.0350 .8264±.0367 .8325±.0329
fourclass .8211±.0205 .8213±.0209 .8310±.0251 .8306±.0247 .8295±.0251 .8309±.0309
german .7942±.0388 .7937±.0386 .7778±.0373 .7978±.0347 .7747±.0411 .7994±.0343
splice .9263±.0091 .9267±.0090 .9246±.0087 .9232±.0099 .8594±.0194 .9245±.0092
usps .9868±.0032 .9855±.0029 .9822±.0036 .9620±.0040 .9310±.0159 .9634±.0045
a9a .8998±.0046 .8980±.0047 .8966±.0043 .9002±.0047 .8420±.0174 .8982±.0028

mnist .9254±.0025 .9132±.0026 .9118±.0029 .9242±.0021 .8615±.0087 .9336±.0025
acoustic .8120±.0030 .8109±.0028 .8099±.0036 .8192±.0032 .7113±.0590 .8210±.0033
ijcnn1 .9174±.0024 .9155±.0024 .9129±.0030 .9269±.0021 .9209±.0079 .9320±.0037

covtype .9504±.0011 .9508±.0011 .9503±.0012 .8244±.0014 .7361±.0317 .8222±.0014
sector .8768±.0126 .9077±.0104 .8767±.0129 .9292±.0081 .9163±.0087 -

news20 .8708±.0069 .8704± .0070 .8712±.0073 .8871±.0083 .8543±.0099 -

Table: Comparison of the testing AUC values (mean±std.)

(a) splice (b) usps (c) a9a

Figure: AUC vs. CPU running time

Conclusion and Future Work

◮ We proposed a novel stochastic proximal algorithm (SPAM) for AUC maximization with general penalty terms.
◮ SPAM can achieve a convergence rate of O(1/T ) up to a logarithmic term for strongly convex objective

functions.
◮ Future work:

◮ Stochastic variance reduction algorithms for AUC maximziation
◮ AUC maximization with deep neural network
◮ Learning theory for AUC maximization (consistency and optimal generalization bounds)
◮ Can SPAM achieve a convergence rate of O(1/T ) without strong convexity?


