UNIVERSITYatALBANY
 State University of New York

SGD for Massive Streaming Data

－Data $\left\{z_{i}=\left(x_{i}, y_{j}\right) \in \mathcal{Z}: i=1 \ldots T\right\}$ ，where $\mathcal{X} \subseteq \mathbb{R}^{d}$ and $\mathcal{Y}=\{ \pm 1\}$ （binary classification）． \boldsymbol{T} is continuously increasing（streaming data）．
－The quality of a classifier $f_{w}(x)=\operatorname{sign}(\mathbf{w} \boldsymbol{x})$ can be measured by misclassification error（accuracy）－related loss $\phi\left(\mathbf{w}^{\top} \boldsymbol{x}\right)$ ．For example，0－1 loss $\phi\left(y \mathbf{w}^{\top} x\right)=l_{\left[y w^{\top} x \leq 0\right]}$ or least square loss $\phi\left(\mathbf{w}^{\top} \boldsymbol{x}\right)=\left(1-\boldsymbol{y} \mathbf{w}^{\top} \boldsymbol{x}\right)^{2}$ ． －Stochastic Gradient Descent（SGD）for accuracy performance measure assume $\left\{z_{t}=\left(x_{t}, y_{t}\right)\right\}$ is i．i．d．，then SGD performs as follows：

$$
\mathrm{w}_{t+1}=\mathrm{w}_{t}-\eta_{t} \nabla_{\mathrm{w}} \phi\left(\mathbf{w}_{t}^{\top} \mathrm{x}_{t}\right)
$$

－The literature on SGD for accuracy is vast［Bach（2011）；Bottou and Le Cun （2003）；Nemirovski et al．（2008）；Shamir and Zhang（2012）；Srebro and Tewari（2010）；Rakhlin et al．（2102）；Ying and Pontil（2008）；．．．．］
Rough summary of SGD＇s convergence：time and per－iteration cost $\mathcal{O}(d)$ ；
convergence rate is of $\mathcal{O}(1 / \sqrt{t})$ ，and $\mathcal{O}(1 / t)$ if strongly convex．

AUC Maximization

－However，accuracy is not suitable for important learning tasks such as imbalanced classification．Area under the ROC curve（AUC）is a suitable performance measure in imbalanced classification（anomaly detection and cancer diagnosis），and information retrieval．［Hanley and McNeil（1982）；
Elkan（2001）；Cortes and Mohri（2003）；Fawcett，2006］
Definition of AUC Score：For a linear scoring function $f(\boldsymbol{x})=\mathbf{w}^{\boldsymbol{T}} \boldsymbol{x}$ ，its AUC score［Clemencon et al（2008）］is defined by

$$
\begin{aligned}
\operatorname{AUC}(\mathrm{w}) & =\operatorname{Pr}\left(w^{\top} x \geq w^{\top} x^{\prime} \mid y=1, y^{\prime}=-1\right) \\
& =1-\mathbb{E}\left[{ }^{[}\left[w^{\top}\left(x-x^{\prime}\right)<0\right] \mid y=1, y^{\prime}=-1\right] .
\end{aligned}
$$

Replacing the indicator function by the least square loss，maximizing AUC can be formulated as

$$
\begin{equation*}
\min _{w} \mathbb{E}\left[\left(1-w^{T}\left(x-x^{\prime}\right)\right)^{2} \mid y=1, y^{\prime}=-1\right]+\Omega(w) \tag{1}
\end{equation*}
$$

where $\Omega(\cdot)$ is a convex penalty term
Question：How to design SGD like algorithms on par with the accuracy case？ Challenge：The objective function is a double integral（summation）over pairs of samples while，in practice，one DOES NOT receive pairs rather a fast－updating sequence of individual samples．

Previous Work

Various work［Wang et al．（2008）；Zhao et al．（2012）］developed SGD／OGD based on the local error $\mathcal{L}_{t}(\mathbf{w})=\frac{1}{t-1} \sum_{j=1}^{t-1} \operatorname{Loss}\left(\boldsymbol{y}_{t}, \mathbf{w}^{\top} x_{j}\right)$ which have storage and per－iteration costs $\mathcal{O}(t d)$ at time t
－Gao et al．（2013）focused on least square loss；Notice that it only needs to and time complexity $\mathcal{O}\left(\boldsymbol{d}^{2}\right)$ ． Recent work［Ying et al．（2016）］showed that（1）is equivalent to the saddle point problem（SPP）：

$$
\begin{equation*}
\min _{w, a, b} \max _{\alpha \in \mathbb{R}}\left\{\mathbb{E}_{\mathbf{z}}[F(\mathbf{w}, \mathbf{a}, \boldsymbol{b}, \alpha ; \mathbf{z})]+\Omega(\mathbf{w})\right\}, \tag{2}
\end{equation*}
$$

where $\boldsymbol{F}(\mathbf{w}, \mathbf{a}, \boldsymbol{b}, \alpha ; \boldsymbol{z})$ is quadratic（see the paper）．
The algorithm there is based on gradient descent on primal variables （ $\mathbf{w}, \boldsymbol{a}, \boldsymbol{b}$ ）and ascent on dual variable α ．It is known that such stochastic first－order algorithm has an optimal rate $\mathcal{O}(1 / \sqrt{t})$ ．

Algorithm	Loss	Ω	Storage	Iteration	Rate
OAM	General	L^{2}	$\mathcal{O}(t d)$	$\mathcal{O}(t d)$	$\mathcal{O}(1 / \sqrt{T})$
OPAUC	Least－Square	L^{2}	$\mathcal{O}\left(d^{2}\right)$	$\mathcal{O}\left(d^{2}\right)$	$\mathcal{O}(1 / \sqrt{T})$
SOLAM	Least－Square	L^{2}	$\mathcal{O}($ d $)$	$\mathcal{O}(\mathrm{d})$	$\mathcal{O}(1 / \sqrt{T})$

Our Algorithm

Key observation：for fixed \mathbf{w}
$\mathbb{E}\left[\left(1-w_{t}^{\top}\left(x-x^{\prime}\right)\right)^{2} \mid y=1, y^{\prime}=-1\right]=\min _{a, b} \max _{\alpha} \mathbb{E}_{\mathbf{z}}[F(w, a, b, \alpha ; z)]$ ．
In particular，the optima are achieved at

$$
\begin{equation*}
a(w)=w^{\top} \mathbb{E}[x \mid y=1], \quad b(w)=w^{\top} \mathbb{E}[x \mid y=-1], \tag{3}
\end{equation*}
$$

$$
\alpha(w)=w^{\top}\left(\mathbb{E}\left[x \mid y^{\prime}=-1\right]-\mathbb{E}[x \mid y=1]\right) .
$$

New algorithm：update w using（proximal）gradient descent while $\boldsymbol{a}, \boldsymbol{b}, \alpha$ are given by（3）and（4）

Algorithm 1：SPAM

：Initialize $\mathbf{w}_{1} \in \mathbb{R}^{\boldsymbol{d}}$ ．
：Receive sample $\boldsymbol{z}_{t}=\left(\boldsymbol{x}_{t}, \boldsymbol{y}_{t}\right)$
4：Compute $\boldsymbol{a}\left(\mathbf{w}_{t}\right), \boldsymbol{b}\left(\mathbf{w}_{t}\right)$ ，and $\alpha\left(\mathbf{w}_{t}\right)$ according to（3）and（4） ：$\hat{w}_{t+1}=\mathrm{w}_{t}-\eta_{t} \partial_{1} F\left(\mathrm{w}_{t}, a\left(w_{t}\right), b\left(\mathrm{w}_{t}\right), \alpha\left(\mathrm{w}_{t}\right) ; z_{t}\right)$
： $\mathrm{w}_{t+1}=\operatorname{prox}_{\eta_{t} \Omega}\left(\hat{\mathrm{w}}_{t+1}\right)$
？end for
＞$\partial_{1} F$ denotes the partial derivative of F wrt the first argument．
－Proximal Mapping： $\operatorname{prox}_{\eta_{t} \Omega}(\boldsymbol{u})=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\boldsymbol{u}-\mathbf{w}\|_{2}^{2}+\eta_{t} \Omega(\mathbf{w})\right\}$
－Our algorithm SPAM shares the spirit as the online forward－backward methods［Rosasco et al．（2014）］．However，there are two main differences between ours and previous proximal splitting algorithms： They focused on the accuracy performance where the objective function is a single summation／integral over individual samples．
The convergence proofs there critically depend on boundedness assumptions：the
boundedness of the iterates and／or the stochastic gradients stochastic gradient；our boundedness of the iterates and／or the stochastic gradients stoc

Convergence Analysis

（A1）Assume that $\Omega(\cdot)$ is β－strongly convex
（A2）There exists an $\boldsymbol{M}>\mathbf{0}$ such that $\|\mathbf{x}\| \leq \boldsymbol{M}$ for any $\boldsymbol{x} \in \mathcal{X}$ ．

- Let $\boldsymbol{C}_{\beta, M}:=\frac{\beta}{128 M^{4}}, \widetilde{C}_{\beta, M}=\beta /\left(1+\frac{\beta^{2}}{128 M^{4}}\right)^{2}$ ，and \mathbf{w}^{*} denote the optimal solution of AUC maximization formulation（1）．

信 $\theta(\mathbf{0}, \mathbf{1})$ in the form of $\left\{\eta_{\boldsymbol{t}}=\frac{\boldsymbol{c}_{\beta, M}}{\boldsymbol{t}^{\theta}}: \boldsymbol{t} \in \mathbb{N}\right\}$ ，the algorithm
SPAM achieves the following．

$$
\mathbb{E}\left[\left\|\mathbf{w}_{\boldsymbol{T}+1}-\mathbf{w}^{*}\right\|^{2}\right]=\mathcal{O}\left(\boldsymbol{T}^{-\theta}\right) .
$$

particular，if we choose $\left\{\eta_{t}=\left[\widetilde{C}_{\beta, M}(\boldsymbol{t}+1)\right]^{-1}: \boldsymbol{t} \in \mathbb{N}\right\}$ ，then there holds

$$
\mathbb{E}\left[\left\|\mathbf{w}_{T+1}-\mathbf{w}^{*}\right\|^{2}\right]=\mathcal{O}\left(\frac{\log T}{T}\right)
$$

－The convergence of SPAM can achieve $\mathcal{O}(\mathbf{1} / \boldsymbol{T})$ up to a logarithmic term，which matches the optimal rate of standard SGD for accuracy with the same storage and per－iteration cost．
Critical idea in the proof：the stochastic gradient
$a_{1} F\left(\mathbf{w}_{t}, \boldsymbol{a}\left(\mathrm{w}_{\mathrm{t}}\right), \boldsymbol{b}\left(\mathrm{w}_{t}\right), \alpha\left(\mathrm{w}_{t}\right) ; \mathbf{z}_{t}\right)$ is an unbiased estimator of the true gradient $\left.\partial_{w} f\left(w_{t}\right)=\partial_{\mathrm{w}} \mathbb{E}\left(1-w_{t}^{\top}\left(x-x^{\prime}\right)\right)^{2} \mid y=1, y^{\prime}=-1\right]$ ，i．e．

Experiments

SPAM－L²：Our proposed algorithm for AUC maximization with $\Omega(\mathbf{w})=\frac{\beta}{2}\|\mathbf{w}\|^{2}$
SPAM－NET：Our proposed algorithm for AUC maximization with elastic net $\Omega(\mathbf{w})=\frac{\beta}{2}\|\mathbf{w}\|^{2}+\beta_{1}\|\mathbf{w}\|_{1}$ SOLAM：Stochastic online algorithm for AUC maximization［Ying et al．（2016）］．
OPAUC：The one－pass AUC optimization algorithm with square loss function［Gao et al．（2013］
OAMseq：The OAM algorithm with reservoir sampling and sequential updating method［Zhao et al．（2011）］．
B－LS－SVM：A batch learning algorithm which optimizes the pairwise least square loss［Joachims（2006）］．

Name	\＃Instances	\＃Dim	Name	\＃Instances	\＃Dim	Name	\＃Instances	\＃Dim
diabetes	768	8	mnist	60,000	780	a9a	32,561	123
fourclass	862	8	acoustic	78,823	50	news20	15,935	62,061
german	1000	24	ijcnn1	141,691	22	usps	9,298	256
splice	3175	60	covtype	581,012	54	sector	9,619	55,197

Data	SPAM－L ${ }^{2}$	SPAM－NET	SOLAM	OPAUC	OAM ${ }_{\text {seq }}$	B－LS－SVM
diabetes	．8272土． 0277	． $8085 \pm .0431$	． $8128 \pm .0304$	． $8309 \pm .0350$	． $8264 \pm .0367$	8325 $\pm .0329$
fourclass	． $8211 \pm .0205$	． $8213 \pm .0209$	． $8310 \pm .0251$	．8306土． 0247	． $8295 \pm .0251$	$8309 \pm .0309$
german	．7942土． 0388	． $7937 \pm .0386$	． $7778 \pm .0373$	． $7978 \pm .0347$	． $7747 \pm .0411$	$7994 \pm .0343$
splice	． $9263 \pm .0091$	． $9267 \pm .0090$	． $9246 \pm .0087$	． $9232 \pm .0099$	．8594土． 0194	9245土． 0092
usps	． $9868 \pm .0032$	． $9855 \pm .0029$	． $9822 \pm .0036$	． $9620 \pm .0040$	． $9310 \pm .0159$	9634土．0045
a9a	． $8998 \pm .0046$	．8980土． 0047	． $8966 \pm .0043$	． $9002 \pm .0047$	． $8420 \pm .0174$	898
ist	． $9254 \pm .0025$	． 913	． 911	． $9242 \pm .002$	． $8615 \pm .0087$	93
ac	． $8120 \pm .0030$	．8109 $\pm .0028$	．8099土．003	． 819	． 71	$8210 \pm .0033$
Ijcnnt	． $9174 \pm .0024$	．9155 $\pm .0024$	． $9129 \pm .0030$	． $9269 \pm .0021$	．9209土． 0079	9320 $\pm .0037$
covtype	． $9504 \pm .0011$	．9508土． 0011	． $9503 \pm .0012$	． $8244 \pm .0014$	． $7361 \pm .0317$	8222土
secto	． $8768 \pm .0126$	．9077 $\pm .0104$	． $8767 \pm .0129$	． $9292 \pm .0081$	． $9163 \pm .0087$	
ne	．8708土．0	00	． $8712 \pm .00$	． $8871 \pm .00$	8543土．00	

Conclusion and Future Work

We proposed a novel stochastic proximal algorithm（SPAM）for AUC maximization with general penalty terms． SPAM can achieve a convergence rate of $\mathcal{O}(1 / T)$ up to a logarithmic term for strongly convex objective Functions．
－Stochastic variance reduction algorithms for AUC maximziation
AUC maximization with deep neural network
Learning theory for AUC maximization（consistency and optimal generalization bounds）
－Can SPAM achieve a convergence rate of $\mathcal{O}(1 / T)$ without strong convexity？

