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Classification

Given data {zi = (xi , yi ) ∈ Z : i = 1...T} , where X ⊆ Rd

and Y = {±1}, we wish to learn the following function

f (xi ) = sign(wT xi ) (1)

where w ∈ Rd is the parameter to be learned.
Evaluation by 0-1 loss is usually replaced by a convex
surrogate loss φ : R→ R+ satisfying I[s<0] ≤ φ(s).

Least Square Loss: φ(s) = (1− s)2

Hinge Loss: φ(s) = (1− s)+

Empirical Risk Minimization (ERM)

w∗ = arg min
w

1

T

T∑
i=1

φ(yiw
T xi ). (2)
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Stochastic Gradient Descent

Stochastic Gradient Descent

Initialize w1, and for any t ≥ 1, draw sample zt = (xt , yt) at
random, and then

wt+1 = wt − ηt∇wφ(ytw
T xt) (3)

The idea of SGD dates back to [Robbins and Monro, 1951].

The literature on SGD is extensive [Bottou and Cun, 2004,
Moulines and Bach, 2011, Srebro and Tewari, 2010].

Most of the literature focuses on the misclassification error or
accuracy.
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Accuracy

Consider the case for a sample of 1000 instances with 990
“true” negative instances and 10 “true” positive instances.
Suppose we obtain the following results:

True +1 True -1

Predicted +1 1 11

Predicted -1 9 979

The misclassification error (or classification accuracy) could
be misleading for real world applications.

This classifier has 98% accuracy, but told us very little.

For this reason, we consider the use of AUC.
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Probabilistic Definition of AUC

A ROC curve is a plot of the false positive
rate vs. the true positive rate.

AUC (area under the ROC curve) is a
widely used measure for imbalanced
classification.

Definition

For a linear scoring function f (x) = wT x , AUC is

AUC (w) = Pr(wT x ≥ wT x ′|y = 1, y ′ = −1)

= 1− E[I[wT (x−x ′)<0]|y = 1, y ′ = −1]

where (x , y), (x ′, y ′) ∈ Z = X × Y are independent.

[Hanley and McNeil, 1982, Bradley, 1997, Fawcett, 2006]5 / 15



AUC Maximization

AUC maximization can be easily modified to a minimization
problem:

min
w

E[I[wT (x−x ′)<0]|y = 1, y ′ = −1] + Ω(w)

where Ω(·) is a penalty function.

Replacing the indicator function by the least square loss, AUC
optimization can be formulated as:

min
w

E[(1−wT (x − x ′))2|y = 1, y ′ = −1] + Ω(w) (4)

Key Challenges
What happens if the dataset is very large?
How to handle streaming data?
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Summary of Existing Work

Common approach is SGD based on local empirical error:

Lt(w) =
1

|{j : yj 6= yt}|

t−1∑
j=1

φ(ytw
T (xt − xj))I[yj 6=yt ] + λ‖w‖2

Algorithm Loss Penalty Storage Iteration Rate

OAM General L2 O(td) O(td) O(1/
√
T )

OPAUC Least-Square L2 O(d2) O(d2) O(1/
√
T )

SOLAM Least-Square L2 O(d) O(d) O(1/
√
T )

New Alg. Least-Square General O(d) O(d) O(1/T )

[Zhao et al. (2012); Kar et al. (2014); Gao et al (2013); Ying et al. (2016)]

7 / 15



Previous Work

Theorem

AUC optimization (4) in the linear case is equivalent to the
following saddle point problem:

min
w,a,b

max
α∈R

{
E[F (w, a, b, α; z)] + Ω(w)

}
, (5)

where the expectation is with respect to z = (x , y), and
F (w, a, b, α; z) is a quadratic function involving p = Pr(y = 1).

To solve this problem, upon receiving data zt we can perform
gradient descent on the primal variables v = (w, a, b) and
gradient ascent on the dual variable α:

vt+1 = vt − γt∂vF (vt , αt , zt), αt+1 = αt + γt∂αF (vt , αt , zt)

[Ying et al., 2016, Nemirovski et al., 2009]8 / 15



Stochastic Proximal AUC Maximization

Key Observation: For fixed w, it is easy to see that the
optima for a, b, and α are respectively achieved at

a(w) = w>E[x |y = 1], b(w) = w>E[x |y = −1], (6)

α(w) = w>(E[x |y ′ = −1]− E[x |y = 1]). (7)

SPAM [Natole et al., 2018]

Initialize w1 ∈ Rd .
Receive sample zt = (xt , yt)
Compute a(wt), b(wt), and α(wt) according to (6) and (7).
wt+1 = proxηtΩ(wt − ηt∂1F (wt , a(wt), b(wt), α(wt); zt))

SPAM follows “proximal splitting” [Duchi and Singer, 2009, Rosasco et al., 2014]

to hand non-smooth penalty term using the proximal step is
given by proxηtΩ(u) = arg min

{
1
2‖u −w‖2

2 + ηtΩ(w)
}
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Convergence Analysis: Assumptions

(A1) Assume data {zt = (xt , yt)} is i.i.d.
(A2) Assume that Ω(·) is β-strongly convex.
(A3) There exists an M > 0 such that ‖x‖ ≤ M for any
x ∈ X .

Theorem

Under the assumptions of (A1), (A2), and (A3), and choosing step
sizes {ηt = [C̃β,M(t + 1)]−1 : t ∈ N}, the algorithm
SPAM achieves the following:

E[‖wT+1 −w∗‖2] = O
(

logT

T

)

The rate O(1/T ) matches the optimal rate of SGD for
accuracy.
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Evaluation on Test Data

Data SPAM-L2 SPAM-NET SOLAM OPAUC OAMseq OAMgra B-LS-SVM

diabetes .8272±.0277 .8085±.0431 .8128±.0304 .8309±.0350 .8264±.0367 .8262±.0338 .8325±.0329
fourclass .8210±.0203 .8211±.0205 .8213±.0209 .8310±.0251 .8306±.0247 .8295±.0251 .8309±.0309
german .7942±.0388 .7937±.0386 .7778±.0373 .7978±.0347 .7747±.0411 .7723±.0358 .7994±.0343
splice .9263±.0091 .9267±.0090 .9246±.0087 .9232±.0099 .8594±.0194 .8864±.0166 .9245±.0092
usps .9868±.0032 .9855±.0029 .9822±.0036 .9620±.0040 .9310±.0159 .9348±.0122 .9634±.0045
a9a .8998±.0046 .8980±.0047 .8966±.0043 .9002±.0047 .8420±.0174 .8571±.0173 .8982±.0028
mnist .9254±.0025 .9132±.0026 .9118±.0029 .9242±.0021 .8615±.0087 .8643±.0112 .9336±.0025

acoustic .8120±.0030 .8109±.0028 .8099±.0036 .8192±.0032 .7113±.0590 .7711±.0217 .8210±.0033
ijcnn1 .9174±.0024 .9155±.0024 .9129±.0030 .9269±.0021 .9209±.0079 .9100±.0092 .9320±.0037
covtype .9504±.0011 .9508±.0011 .9503±.0012 .8244±.0014 .7361±.0317 .7403±.0289 .8222±.0014
sector .8768±.0126 .9077±.0104 .8767±.0129 .9292±.0081 .9163±.0087 .9043±.0100 -
news20 .8708±.0069 .8704± .0070 .8712±.0073 .8871±.0083 .8543±.0099 .8346±.0094 -

SPAM-L2 uses Ω(w) = β
2 ‖w‖

2
2 and SPAM-NET uses

Ω(w) = β
2 ‖w‖

2
2 + β1‖w‖1

Online Learning: OPAUC [Gao et al., 2013] ; OAMseq and
OAMgra [Zhao et al., 2011]

Batch Learning: B-SVM-OR and B-LS-SVM [Joachims, 2006]
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Running Time Comparison
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