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Background: Classification

Given data {zi = (xi , yi ) ∈ Z : i = 1...T},
where xi ∈ X ⊆ Rd , yi ∈ Y = {±1}, and
X × Y = Z, we wish to learn the
following function

f (xi ) = sign(wT xi ), (1)

where w ∈ Rd is the parameter to be
learned.

We want w that gives the best
performance, or accuracy.
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Confusion Matrix

The decision made by a binary classifier can be made into a
structure called a confusion matrix (C) having four
categories: true positive (TP), false positive (FP), false
negative (FN), and true negative (TN).

Actual Positive Actual Negative

Predicted Positive TP FP

Predicted Negative FN TN
Let P denote the number of samples that of the positive class
and N denote the number of samples that of the negative
class.
The most obvious performance metric to consider is accuracy:

Accuracy =
TP + TN

P + N
. (2)

4 / 60



Background: Setup

In machine learning, we want to optimize the empirical risk:

min
w

Remp(w). (3)

So in the case of accuracy, we have

Remp(w) =
1

T

T∑
i=1

I[yiwT xi < 0]. (4)

Other loss functions include square loss and logistic loss.
Hinge Loss: φ(s) = max{0, 1− s}
Logistic Loss: φ(s) = 1

ln 2 ln(1 + e−s)
Square Loss: φ(s) = (1− s)2

Empirical Risk Minimization (ERM)

w∗ = arg min
w

1

T

T∑
i=1

φ(yiw
T xi ) (5)
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Stochastic Gradient Descent

Stochastic Gradient Descent

Initialize w1, and for any t ≥ 1, draw sample zt = (xt , yt) at
random, and then

wt+1 = wt − ηt∇wφ(ytw
T xt). (6)

The idea of SGD dates back to [Robbins and Monro, 1951].

The literature on SGD is extensive
[Bottou and Cun, 2004, Srebro and Tewari, 2010,
Moulines and Bach, 2011, Ying and Pontil, 2008]

Most of the literature focuses on the misclassification error or
accuracy, but is it always a good performance measure?
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Imbalanced Data

In many application domains (cancer diagnosis, wildfire
prediction, fraud detection, etc.), the ratio of class
observations are disproportionate resulting in the data being
imbalanced.
Consider the case for a sample of 1000 instances with 990
“true” negative instances and 10 “true” positive instances.
Suppose we obtain the following results:

True +1 True -1

Predicted +1 1 11

Predicted -1 9 979

The misclassification error (or classification accuracy) could
be misleading for real world applications.
This classifier has 98% accuracy, but told us very little.
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Precision and Recall

Precision and Recall using the confusion matrix are defined
as follows:

Prec(C ) =
TP

TP + FP
Rec(C ) =

TP

P

Precision is defined as the fraction of relevant instances
among the retrieved instances.

Recall is the fraction of relevant instances that have been
retrieved over the total amount of relevant instances.

These two values together can be used to measure the
performance of a classifier.

This method is popular to use for web search engines since
user typically only scan the first few results that are presented.
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Example

Consider the previous confusion matrix:

True +1 True -1

Predicted +1 1 11

Predicted -1 9 979

Calculating precision and recall gives:

Prec(C ) =
TP

TP + FP
=

1

1 + 11
= 0.04762

Rec(C ) =
TP

P
=

1

10
= 0.1

Even though the accuracy is high, the classifier has poor
performance. Consider the following examples:

Determining if a transaction is fraudulent
Diagnosing if a patient has cancer
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Receiver Operating Characteristic (ROC) Curve

Given a confusion matrix, a
ROC curve is a plot of the
False Positive Rate (FPR)
on the x-axis and the True
Positive Rate (TPR) on the
y-axis.

TPR =
TP

TP + FN

FPR =
FP

FP + TN

[Hanley and McNeil, 1982, Bradley, 1997, Fawcett, 2006]
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Probabilistic Definition of AUC

Definition

For a linear scoring function f (x) = wT x, AUC is

AUC (w) = Pr(wT x ≥ wT x′|y = 1, y ′ = −1)

= 1− E[I[wT (x−x′)<0]|y = 1, y ′ = −1],

where (x, y), (x′, y ′) ∈ Z = X × Y are independent.
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AUC Maximization

AUC maximization can be easily modified to:

min
w

E[I[wT (x−x′)<0]|y = 1, y ′ = −1] + Ω(w), (7)

where Ω(·) is a penalty function.

Replacing the indicator function by the least square loss, AUC
optimization can be formulated as:

min
w

E[(1− wT (x− x′))2|y = 1, y ′ = −1] + Ω(w). (8)

When ρ is a uniform distribution over the finite data
{zi = (xi , yi ) ∈ Z : i = 1...T}, AUC maximization reduces to

min
w

1

n+n−

n+∑
i=1

n−∑
j=1

(1− wT (xi − xj))2Iyi=1∧yj=−1 + Ω(w).
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Research Challenges

How can we design learning algorithms
that optimize the AUC score instead?

Key Challenges:

What happens if the dataset is very
large?
How do we handle streaming data?

AUC is expressed as a sum of pairwise
losses between instances from different
classes.

Computing AUC is quadratic in the
number of received training samples.
In a real world scenario, data arrives
sequentially, not in pairs of different
classes.
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Existing Methods

L(w) =
λ

2
‖w‖2 +

n+∑
i=1

n−∑
j=1

max{0, 1− wT (x+
i − x−j )} (9)

The authors rewrote the loss function as a sum of losses for
individual instances, i.e. L(w) =

∑T
t=1 Lt(w) where:

Lt(w) = Iyt=1h
t
+(w) + Iyt=−1h

t
−(w) (10)

In the above, ht±(w) are defined as:

ht+(w) =
t−1∑
t′=1

Iyt′=−1`(w, xt−xt′), h
t
−(w) =

t−1∑
t′=1

Iyt′=+1`(w, xt′−xt)

(11)

[Zhao et al., 2011]
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Existing Methods

The authors then apply gradient descent as in
[Zinkevich, 2003]. This however, requires all previously stored
samples to be used to compute the gradient.

To overcome this, the authors used reservoir sampling by
[Vitter, 1985] which is widely used for streaming data.

A new instance will randomly replace one instance inside the
buffer.

Although this reduces the storage costs, the buffer size needs
to be set sufficiently large.
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Existing Methods

L(w) =
λ

2
‖w‖2 +

n+∑
i=1

n−∑
j=1

(1− wT (x+
i − x−j ))2

2n+n−
(12)

The authors modified the loss function to a sum of losses over
individual samples. They then observed that by taking the
gradient, that you could easily update the mean and
covariance matrix by c−t =

∑
i :yi=−1 xi/T

−
t and

S−t =
∑

i :yi=−1(xix
T
i − c−t [c−t ]T )/T−t , respectively.

The same approach can be applied for when yt = −1. Then
the gradient solution of wt+1 is updated by
wt = wt − ηt∇L(wt).
A significant drawback of this solution is the storage of the
covariance matrix.

[Gao et al., 2013]16 / 60



Existing Methods

The previous two methods only represent a small sample of
approaches to developing methods for AUC optimization.

Work on optimizing AUC has been done using a variety of
methods and continues to be an active area of research.

Online Learning [Ding et al., 2016, Ding et al., 2017,
Liu et al., 2018, Lei and Ying, 2019]
Deep Learning [Liu et al., 2019]
Variance Reduction [Dan and Sahoo, 2019]
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Stochastic Online AUC Maximization

Theorem

AUC optimization (7) in the linear case is equivalent to the
following saddle point problem:

min
w,a,b

max
α∈R

{
E[F (w, a, b, α; z)] + Ω(w)

}
, (13)

where the expectation is with respect to z = (x, y),
p = Pr(y = 1), and

F (w, a, b, α; z) = (1− p̂)(w>x− a)2I[y=1] + p̂(w>x− b)2I[y=−1]

+ 2(1 + α)w>x(p̂I[y=−1] − (1− p̂)I[y=1])

− p̂(1− p̂)α2.
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Summary of Existing Work

Algorithm Loss Penalty Storage Iteration Rate

OAM Hinge L2 O(td) O(td) O(1/
√
T )

OPAUC Least-Square L2 O(d2) O(d2) O(1/
√
T )

SOLAM Least-Square L2 O(d) O(d) O(1/
√
T )

SPAM Least-Square General O(d) O(d) O(1/T )
SPDAM Least-Square L2 O(md) O(md) O(θt)

Can we improve the current convergence rate for AUC
maximization?

Can we include other penalty terms besides L2?
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Completed Work #1

First, we begin with Theorem 1.

For fixed w, it is easy to see that the optima for a, b, and α
are respectively achieved at

a(w) = w>E[x|y = 1], b(w) = w>E[x|y = −1], (14)

α(w) = w>(E[x|y ′ = −1]− E[x|y = 1]). (15)

Using the updates for a, b, and α, our new AUC optimization
formulations becomes

min
w

E[F (w, a(w), b(w), α(w); zt)] + Ω(w) (16)

[Natole et al., 2018]
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Proximal Step

The proximal step is given by

proxηtΩ(ŵt+1) = arg min

{
1

2
‖ŵt+1 − w‖2

2 + ηtΩ(w)

}
The main idea is to find a point w that is close to ŵt+1, the
solution from the gradient step.
The proximal operator reduces to Euclidean projection when
Ω(w) is an indicator function.
Because of the use of the proximal operator, SPAM can
accommodate for a non-smooth penalty term Ω(·).
We will consider for Ω(w) the following:

L2, i.e. Ω(w) = β
2 ‖w‖

2
2

Elastic Net, i.e. Ω(w) = β
2 ‖w‖

2
2 + β1‖w‖1

[Parikh et al., 2014, Zou and Hastie, 2005]
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Stochastic Proximal AUC Maximization

SPAM

Input: Step sizes {ηt > 0 : t ∈ N}
Initialize w1 ∈ Rd .
for t = 1 to T do

Receive sample zt = (xt , yt)
Compute a(wt), b(wt), and α(wt) according to (14) and (15).
ŵt+1 = wt − ηt∂1F (wt , a(wt), b(wt), α(wt); zt)
wt+1 = proxηtΩ(ŵt+1)

end for

Note: ∂1F denotes the partial derivative of F with respect to
the first argument.
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Key Lemma

Lemma

Let wt be given by SPAM as described and let
f (w) = p(1− p)Ezt [(1− wT (x− x′))2|y = 1, y ′ = −1]. Then, we
have that

∂f (w) = Ezt [∂1F (wt , a(wt), b(wt), α(wt); zt)] (17)

where ∂1 denotes the partial derivative with respect to the first
argument.

The above lemma implies, conditioned on {z1, . . . , zt−1}, that
∂1F (wt , a(wt), b(wt), α(wt); zt) is an unbiased estimator of
the true gradient ∂wf (wt).
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Convergence Analysis: Assumptions

The convergence results are established based on the following
two assumptions:

(A1) Assume that Ω(·) is β-strongly convex.
(A2) There exists an M > 0 such that ‖x‖ ≤ M for any x ∈ X .

Furthermore, we define the following constants:

Cβ,M :=
β

128M4
C̃β,M =

β

(1 + β2

128M4 )2

We use the conventional notation that for any T ∈ N,
NT = {1, . . . ,T}.
Let w∗ denote the optimal solution of formulation (16), i.e.,

w∗ = arg min
w∈Rd
{E[F (w, a(w), b(w), α(w); zt)] + Ω(w))}.
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Convergence Analysis: Summary

Theorem

Under the assumptions (A1), (A2), and choosing step sizes with

some θ ∈ (0, 1) in the form of
{
ηt =

Cβ,M
tθ

: t ∈ N
}

, the algorithm

SPAM achieves a convergence rate of O(T−θ).

Theorem

Under the assumptions of (A1), (A2), and choosing step sizes
{ηt = [C̃β,M(t + 1)]−1 : t ∈ N}, the algorithm SPAM achieves a
convergence rate of O (logT/T ).

The convergence of SPAM can achieve O(1/T ) up to a
logarithmic term, which matches the optimal rate of standard
stochastic gradient descent
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Experimental Setup

For training, 80% of the data was used for training while the
remaining data was used for testing.
The results are based on 20 runs for each dataset to compute
the average and standard deviation.
All experiments were conducted with MATLAB and the codes
the compared methods where obtained from the authors.

datasets ]inst ]feat datasets ]inst ]feat

diabetes 768 8 fourclass 862 2
german 1,000 24 splice 3,175 60

usps 9,298 256 a9a 32,561 123
mnist 60,000 780 acoustic 78,823 50
ijcnn1 141,691 22 covtype 581,012 54
sector 9,619 55,197 news20 15,935 62,061

Table: Basic information about the benchmark datasets used in the
experiments.
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Experimental Setup

SPAM-L2: The proposed stochastic proximal algorithm for
AUC maximization with Frobenious norm.
SPAM-NET: The proposed stochastic proximal algorithm for
AUC maximization with elastic net.
SOLAM: The online projected gradient descent algorithm for
AUC maximization.
OPAUC: The one-pass AUC optimization algorithm with
square loss function.
OAMseq: The OAM algorithm with reservoir sampling and
sequential updating method.
OAMgra: The OAM algorithm with reservoir sampling and
online gradient updating method.
B-LS-SVM: A batch learning algorithm which optimizes the
pairwise square loss [Joachims, 2006] .
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Evaluation on Test Data

Data SPAM-L2 SPAM-NET SOLAM OPAUC OAMseq OAMgra B-LS-SVM

diabetes .8272±.0277 .8085±.0431 .8128±.0304 .8309±.0350 .8264±.0367 .8262±.0338 .8325±.0329
fourclass .8210±.0203 .8211±.0205 .8213±.0209 .8310±.0251 .8306±.0247 .8295±.0251 .8309±.0309
german .7942±.0388 .7937±.0386 .7778±.0373 .7978±.0347 .7747±.0411 .7723±.0358 .7994±.0343
splice .9263±.0091 .9267±.0090 .9246±.0087 .9232±.0099 .8594±.0194 .8864±.0166 .9245±.0092
usps .9868±.0032 .9855±.0029 .9822±.0036 .9620±.0040 .9310±.0159 .9348±.0122 .9634±.0045
a9a .8998±.0046 .8980±.0047 .8966±.0043 .9002±.0047 .8420±.0174 .8571±.0173 .8982±.0028

mnist .9254±.0025 .9132±.0026 .9118±.0029 .9242±.0021 .8615±.0087 .8643±.0112 .9336±.0025
acoustic .8120±.0030 .8109±.0028 .8099±.0036 .8192±.0032 .7113±.0590 .7711±.0217 .8210±.0033
ijcnn1 .9174±.0024 .9155±.0024 .9129±.0030 .9269±.0021 .9209±.0079 .9100±.0092 .9320±.0037

covtype .9504±.0011 .9508±.0011 .9503±.0012 .8244±.0014 .7361±.0317 .7403±.0289 .8222±.0014
sector .8768±.0126 .9077±.0104 .8767±.0129 .9292±.0081 .9163±.0087 .9043±.0100 -

news20 .8708±.0069 .8704± .0070 .8712±.0073 .8871±.0083 .8543±.0099 .8346±.0094 -

Comparison of AUC values (mean±std) on the evaluated
datasets.
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Running Time Comparison
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Completed Work #2

In this work, we determine if we can achieve a faster rate of
convergence by compromising on the per-iteration cost.

Recall the empirical risk minimization problem for AUC:

argminw
1

n+n−

n+∑
i=1

n−∑
j=1

(1−w>(xi −xj))2I[yi=1∧yj=−1] +
λ

2
‖w‖2.

Denote by NT = {1, 2, . . . ,T} for any T ∈ N. Now, when ρ
is a uniform distribution over finite data {(xi , yi ) : i ∈ NT},
we can reformulate Theorem 1 as a:

min
w∈Rd

(a,b)∈R2

max
α∈R

1

T

∑
i∈NT

F (w, a, b, α, zi ) (18)
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New Formulation

Using the definition of F (w, a, b, α, zi ), we now consider the
following general saddle point problem for AUC maximization

min
w,a,b

max
α

{ 1

n+

∑
i∈Nn

(w>xi − a)2Iyi=1 +
1

n−

∑
i∈Nn

(w>xi − b)2Iyi=−1

+ 2(1 + α)w>
[ 1

n−

∑
i∈Nn

xi Iyi=−1 −
1

n+

∑
i∈Nn

xi Iyi=1

]
− α2

+ Ω(w)
}

(19)

where Ω(w) is a penalty term. If Ω(w) = I‖w‖≤R(w), the
above formulation is equivalent to the saddle point
formulation (18).
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Key Ideas

Before we apply the motivation ideas, the following notations
will be useful: let p = n+

n and b = m− −m+ where m+ and
m− are the means of the positive and negative classes,
respectively, i.e.

m+ =
1

n+

∑
i∈Nn

xi Iyi=1 and m− =
1

n−

∑
i∈Nn

xi Iyi=−1.

For any i ∈ Nn, denote

x̄i =
xi −m+√

2p
if yi = 1, x̄i =

xi −m−√
2(1− p)

if yi = −1.

(20)

Let g(w) = |b>w|2
2 + b>w + Ω(w). To satisfy the hypothesis

that g is a λ strong convex function, we will let
Ω(w) = λ

2‖w‖
2.
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Algorithm Formulation

By minimizing out a, b, and α in (19) and using (20), we
obtain the following new formulation:

min
w

max
β

{1

n

∑
i∈Nn

βiw
>x̄i −

‖β‖2

2
+ g(w)

}
where g : Rd → R is defined, for any w ∈ Rd , by

g(w) =
|b>w|2

2
+ b>w +

λ

2
‖w‖2.
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Algorithm Formulation

The following algorithm is inspired by the stochastic
primal-dual algorithm as in
[Zhang and Xiao, 2017, Yu et al., 2015]

As from before, we uniformly and randomly select a
mini-batch of size m.

The critical ideas are as follows:

First, we solve the dual variable,
Second, solve for the primal variable w.
The auxiliary variables (ut and ūt+1) are similar to Nesterov’s
acceleration technique [Nesterov, 2013] to help the algorithm
yield a faster rate of convergence.
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Solution to Dual Variable

The first step is to solve for the dual variable, β
(t+1)
i .

β
(t+1)
i =

{
argmaxβi∈R

{
βi 〈w̄(t), xi 〉 − |βi |

2

2 −
|βi−β

(t)
i |

2

2σ

}
if i ∈ I

β
(t)
i otherwise.

u(t+1) = u(t) +
1

n

∑
i∈I

(β
(t+1)
i − β(t)

i )xi .

ū(t+1) = u(t) +
n

m
(u(t+1) − u(t))

The additional steps are based on Nesterov’s formulation to
increase the rate of convergence.
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Solution to the Primal Variable

Second, solve for the primal variable w.

w(t+1) = argminw∈Rd

{
〈ū(t+1),w〉+ g(w) +

‖w − w(t)‖2

2τ

}
.

w̄(t+1) = w(t+1) + θ(w(t+1) − w(t)).

Theorem

Assume that g is λ-strongly convex. Let (w∗, β∗) be the saddle
point of (13). If the parameters σ, τ and θ are chosen in a specific
manner, then

E[‖wt+1 − w∗‖] = O(θt)

.
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Experimental Setup

Same setup as for the previous algorithm.
Comparison Algorithms

SPDAM: The proposed stochastic primal-dual algorithm for
AUC maximization.
regSOLAM: The proposed regularized online projected
gradient descent algorithm for AUC maximization.
Online Uni-Exp: Online learning algorithm which optimizes
the (weighted) univariate exponential loss
[Kotlowski et al., 2011].
B-SVM-OR: A batch learning algorithm which optimizes the
pairwise hinge loss [Joachims, 2006]
B-LS-SVM: A batch learning algorithm which optimizes the
pairwise square loss.
Previous Algorithms

OPAUC
OAMgra
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Experiments

Datasets SPDAM regSOLAM OPAUC OAMgra online Uni-Exp B-SVM-OR B-LS-SVM

diabetes .8275±.0302 .8140±.0330 .8309±.0350 .8262±.0338 .8215±.0309 .8326±.0328 .8325±.0329
fourclass .8223±.0275 .8222±.0276 .8310±.0251 .8295±.0251 .8281±.0305 .8305±.0311 .8309±.0309
german .7959±.0265 .7830±.0247 .7978±.0347 .7723±.0358 .7908±.0367 .7935±.0348 .7994±.0343
splice .9227±.0128 .9237±.0090 .9232±.0099 .8864±.0166 .8931±.0213 .9239±.0089 .9245±.0092
usps .9854±.0019 .9848±.0021 .9620±.0040 .9348±.0122 .9538±.0045 .9630±.0047 .9634±.0045
a9a .8967±.0032 .8970±.0048 .9002±.0047 .8571±.0173 .9005±.0024 .9009±.0036 .8982±.0028

mnist .9552±.0011 .9599±.0014 .9242±.0021 .8643±.0112 .7932±.0245 .9340±.0020 .9336±.0025
acoustic .8119±.0039 .8114±.0035 .8192±.0032 .7711±.0217 .8171±.0034 .8262±.0032 .8210±.0033
ijcnn1 .9132±.0016 .9108±.0030 .9269±.0021 .9100±.0092 .9264±.0035 .9337±.0024 .9320±.0037

covtype .9409±.0011 .9332±.0020 .8244±.0014 .7403±.0289 .8236±.0017 .8248±.0013 .8222±.0014
sector .9406±.0062 .9734±.0036 .9292±.0081 .9043±.0100 .9215±.0034 - -

Comparison of AUC values (mean±std) on the evaluated
datasets.
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Convergence Rate: Batch Sizes

(a) splice (b) a9a

Figure: AUC vs. Iteration curves of SPDAM algorithm for various batch
sizes. The batch size is a percentage of the number of samples.
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Convergence Rate: SPDAM vs. regSPAM

(a) splice (b) usps

Figure: AUC vs. Iteration curves of SPDAM against regSOLAM. For
SPDAM, 10% of the data was chosen for a batch size. The optimal value
of the parameter λ from SPDAM was used in regSOLAM.
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Benchmark Datasets

Dataset ]inst ]feat Dataset ]inst ]feat

a9a 32,561 123 ijcnn1 141,691 22
acoustic 78,823 50 ionosphere 351 34

alpha 500,000 500 mnist 60,000 780
beta 500,000 500 news20 15,935 62,061

covtype 581,012 54 sector 9,619 55,197
diabetes 768 8 splice 3,175 60
fourclass 862 2 svmguide3 1243 21
german 1,000 24 usps 9,298 256

Table: Summary of standard benchmark datasets used in the experiments.
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Anomaly Detection Tasks

Malicious Websites. We can apply the algorithms to
determine if a website is malicious or not using the webspam
dataset.

Bioinformatics Detecting noncoding RNAs from sequenced
genomes will be done using the cod-rna dataset.

Credit Card Fraud. The australian dataset is used for
predicting credit card fraud detection.

Medical Diagnosis The datasets arrhythmia, breast-cancer,
mammography, and thyroid are used for detecting various
illnesses.

Spam Filter The spambase dataset is used for determining
whether an email is considered legitimate or not.
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Anomaly Detection Datasets

datasets ]inst ]feat datasets ]inst ]feat

arrhythmia 452 274 mammography 11183 6
australian 690 14 spambase 4601 57

bio 145,751 73 thyroid 3772 6
breastw 683 9 webspam 350,000 254

Table: Summary of datasets used for anomaly detection.
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Benchmark Dataset Results

Datasets regSOLAM SPAM SPDAM

a9a .8951±.0046 .8995±.0041 .8969±.0048
acoustic .7926±.0040 .8055±.0084 .8153±.0032

alpha .8152±.0025 .8525±.0027 .8152±.0012
beta .5011±.0019 .5037±.0011 .5033±.0006

covtype .7658±.0156 .7990±.0001 .8197±.0013
diabetes .8178±.0309 .8269±.0339 .8287 ±.0311
fourclass .8212±.0209 .8214±.0214 .8217±.0205
german .7765±.0360 .7899±.0313 .7913±.0302
ijcnn1 .9161±.0024 .9285±.0019 .9145± .0019

ionosphere .8821±.0400 .9064±.0376 .9292±.0364
mnist .9267±.0093 .9467±.0067 .9356±.0028

news20 .9399±.0038 .8708±.0069 .8655±.0028
sector .9734±.0036 .8768±.0126 .9406±.0062
splice .9100±.0155 .9173±.0143 .9243±.0125

svmguide3 .6488±.0328 .6073±.0490 .7227±.0408
usps .9690±.0033 .9775±.0032 .9791±.0033
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Results

Datasets regSOLAM SPAM SPDAM

arrhythmia .8284±.0775 .8523±.0672 .8738±.0576
australian .7178±.0462 .7178±.0466 .7656±.0406
breastw .9308±.0208 .9352±.0168 .9315±.0204
cod-rna .9930±.0001 .9062±.0025 .9931 ±.0001

mammography .7815±.2305 .9178±.0205 .9152±.0181
spambase .6491±.0673 .7232±.0204 .7716±.0277

thyroid .9972±.0023 .9976±.0014 .9976±.0012
webspam .9609±.0022 .9660±.0005 .9527±.0006

Table: Comparison of the testing AUC values (mean±std.) on anomaly
detection datasets.
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Convergence Rate: Iterations

(a) splice (b) usps

Figure: AUC vs. Iteration curves of SPDAM against regSOLAM. For
SPDAM, 10% of the data was chosen for a batch size. The optimal value
of the parameter λ from SPDAM was used in regSOLAM.
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Convergence Rate: Time

(a) splice (b) usps

Figure: AUC vs. Iteration curves of SPDAM against regSOLAM. For
SPDAM, 10% of the data was chosen for a batch size. The optimal value
of the parameter λ from SPDAM was used in regSOLAM.
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Conclusion

Algorithm Loss Penalty Storage Iteration Rate

OAM Hinge L2 O(td) O(td) O(1/
√
T )

OPAUC Least-Square L2 O(d2) O(d2) O(1/
√
T )

regSOLAM Least-Square L2 O(d) O(d) O(1/
√
T )

SPAM Least-Square General O(d) O(d) O(1/T )
SPDAM Least-Square L2 O(md) O(md) O(θt)

Developed a stochastic proximal algorithm for AUC
maximization with a convergence rate of O(1/T )

Developed a stochastic proximal algorithm with a linear
convergence rate.

Demonstrated the proposed methods on anomaly detection
tasks.
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Possible Future Work

Variance Reduction methods for AUC optimization using
[Johnson and Zhang, 2013, Johnson and Zhang, 2013] and
stochastic primal-dual algorithms [Zhang and Xiao, 2017]

Extend the work presented here to include kernel functions
[Dai et al., 2014]

Many of the ideas can also be extended to optimizing the area
under a lift chart [Ling and Li, 1998, Shen et al., 2007]
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Publications

Natole, Jr., M., Ying, Y., and Lyu, S. (2018)
Stochastic Proximal Algorithms for AUC Maximization
In International Conference on Machine Learning, pages 3707-3716, 2018.

Natole, Jr., M., Ying, Y., and Lyu, S. (2019)
Stochastic AUC Optimization Algorithms with Linear Convergence.
In Frontiers in Applied Mathematics and Statistics, 5:30, 2019.

Natole, Jr., M., Ying, Y., Buyantuev, A., Stessin, M., Buyantuev, V.,
and Lapenas, A.
Climate Warming as Principle Control of Forest Mega-Fires in East
Siberia
TBD.

Thank you!

50 / 60



References I

Bottou, L. and Cun, Y. L. (2004).

Large scale online learning.

In Advances in neural information processing systems.

Bradley, A. P. (1997).

The use of the area under the roc curve in the evaluation of machine
learning algorithms.

Pattern recognition, 30(7):1145–1159.

Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-F. F., and Song,
L. (2014).

Scalable kernel methods via doubly stochastic gradients.

In Advances in Neural Information Processing Systems, pages 3041–3049.

51 / 60



References II

Dan, S. and Sahoo, D. (2019).

Variance reduced stochastic proximal algorithm for auc maximization.

arXiv preprint arXiv:1911.03548.

Ding, Y., Liu, C., Zhao, P., and Hoi, S. C. (2017).

Large scale kernel methods for online auc maximization.

In 2017 IEEE International Conference on Data Mining (ICDM), pages
91–100. IEEE.

Ding, Y., Zhao, P., Hoi, S. C., and Ong, Y.-S. (2016).

Adaptive subgradient methods for online auc maximization.

arXiv preprint arXiv:1602.00351.

52 / 60



References III

Fawcett, T. (2006).

An introduction to roc analysis.

Pattern recognition letters, 27(8):861–874.

Gao, W., Jin, R., Zhu, S., and Zhou, Z.-H. (2013).

One-pass auc optimization.

In International Conference on Machine Learning, pages 906–914.

Hanley, J. A. and McNeil, B. J. (1982).

The meaning and use of the area under a receiver operating characteristic
(roc) curve.

Radiology, 143(1):29–36.

53 / 60



References IV

Joachims, T. (2006).

Training linear svms in linear time.

In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, pages 217–226, New
York, NY, USA. ACM.

Johnson, R. and Zhang, T. (2013).

Accelerating stochastic gradient descent using predictive variance
reduction.

In Advances in neural information processing systems, pages 315–323.

Kotlowski, W., Dembczynski, K., and Hüllermeier, E. (2011).
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